Hadoop能够进行大批量数据的离线处理,但是在实时计算上的表现实在是不尽如人意;而Storm就可以担当这部分的角色,今天,就让我们看看关于Storm的精华问答吧。
1
Q:hadoop发展史
A:
2
Q:Hadoop 有哪些优点?
A:Hadoop 是一个能够让用户轻松架构和使用的分布式计算的平台。用户可以轻松地在 Hadoop 发和运行处理海量数据的应用程序。其优点主要有以下几个:
(1) 高可靠性 : Hadoop 按位存储和处理数据的能力值得人们信赖。
(2) 高扩展性 : Hadoop 是在可用的计算机集簇间分配数据并完成计算任务的,这些集簇可以方便地扩展到数以干计的节点中。
(3) 高效性 : Hadoop能够在节点之间动态地移动数据,并保证各个节点的动态平衡,因此处理速度非常快。
(4) 高容错性 : Hadoop能够自动保存数据的多个副本,并且能够自动将失败的任务重新分。
(5) 低成本 : 与一体机、商用数据仓库以及 QlikView、 Yonghong Z- Suites 等数据集市相比,Hadoop 是开源的,项目的软件成本因此会大大降低。
Hadoop 带有用 Java 语言编写的框架,因此运行在 linux 生产平台上是非常理想的, Hadoop 上的应用程序也可以使用其他语言编写,比如 C++。
Q:Hadoop框架中最核心的设计
A:MapReduce和HDFS。MapReduce的思想是由Google的一篇论文所提及而被广为流传的,简单的一句话解释MapReduce就是“任务的分解与结果的汇总”。HDFS是Hadoop分布式文件系统(Hadoop Distributed File System)的缩写,为分布式计算存储提供了底层支持。
Q:HDFS的架构
A:主从结构
•主节点, namenode
•从节点,有很多个: datanode
namenode负责:
•接收用户操作请求
•维护文件系统的目录结构
•管理文件与block之间关系,block与datanode之间关系
datanode负责:
•存储文件
•文件被分成block存储在磁盘上
•为保证数据安全,文件会有多个副本
Secondary NameNode负责:
合并fsimage和edits文件来更新NameNode的metedata
Q:Hadoop中的RPC机制
A:同其他RPC框架一样,Hadoop RPC分为四个部分:
(1)序列化层:Clent与Server端通信传递的信息采用了Hadoop里提供的序列化类或自定义的Writable类型;
(2)函数调用层:Hadoop RPC通过动态代理以及java反射实现函数调用;
(3)网络传输层:Hadoop RPC采用了基于TCP/IP的socket机制;
(4)服务器端框架层:RPC Server利用java NIO以及采用了事件驱动的I/O模型,提高RPC Server的并发处理能力。
小伙伴们冲鸭,后台留言区等着你!
关于Hadoop,今天你学到了什么?还有哪些不懂的?除此还对哪些话题感兴趣?快来留言区打卡啦!留言方式:打开第XX天,答:……
同时欢迎大家搜集更多问题,投稿给我们!风里雨里留言区里等你~
福利
1、扫描添加小编微信,备注“姓名+公司职位”,加入【云计算学习交流群】,和志同道合的朋友们共同打卡学习!
2、公众号后台回复:白皮书,获取IDC最新数据白皮书整理资料!
推荐阅读:
一场全能的开发者大会,来自助力开发者成功进阶的华为云
抖音微博等短视频千万级高可用、高并发架构如何设计?
20大5G关键技术
Fast.ai:从零开始学深度学习 | 资源帖
10个简单小窍门带你提高Python数据分析速度(附代码)
程序员爬取 3 万条评论,《长安十二时辰》槽点大揭秘!
暗网竟成比特币最大用户? 上半年5.15亿美元被用于非法活动
真香,朕在看了!