如何在Flutter上实现高性能的动态模板渲染

背景

最近小组在尝试使用一套阿里dinamicX的DSL,通过动态模板下发,实现Flutter端的动态化模板渲染;本来以为只是DSL到Widget的简单映射和数据绑定,但实际跑起来的效果出乎意料的差,列表卡顿严重,帧率丢失严重。这就让我们不得不深入Flutter的Framework层,去了解Widget的创建、布局以及渲染的过程。

为什么Native可行的方案在Flutter效果这么差

在iOS和Android开发中,DSL到Native的方案其实并不陌生;Android中,我们就是通过编写XML文件来描述页面布局。Native的这种映射的方案,为什么在Flutter上,效果变得如此糟糕呢?

先通过一个简单的示例来看一下dinamicX DSL的定义:

可以看到DSL的设计与Android中的XML很相似,在我们的DSL中,每个节点的width和height属性,可以赋值两种特殊意义的值:match_parentmatch_content

match_parent:当前节点大小,尽量撑开到父节点大小;

match_content:当前节点大小,尽量缩小到容纳子节点大小;

在Flutter中,并没有match_parentmatch_content的概念。最初我们的想法很简单,在Widget的build方法中,如果属性是match_parent,就不断向上遍历,直到找到一个父节点有确定的宽高值为止;如果是match_content,遍历所有的子节点,获取子节点大小;一旦子节点存在match_content属性,会递归调用下去。

表面上看,做好每个节点的宽高计算的缓存,虽然达不到一次性线性布局,这样的开销也并不是很大。但我们忽略掉了一个很重要的问题:Widget是immutable的,只是包含了视图的配置信息,是非常轻量级的。在Flutter中,Widget会被不断的创建销毁,这会导致布局计算非常的频繁。

要解决这些问题,单单处理Widget是不够的,需要Element以及RenderObject上做更多的处理,这也就是我们为什么要考虑自定义Widget的原因。

接下来通过源码来了解Flutter中Widget的build、layout以及paint相关的逻辑。

认识三棵树

我们通过一个简单的Widget——Opacity来了解一下WidgetElementRenderObject

Widget

在Flutter中,万物皆是Widget,Widget是immutable的,只是包含了视图的配置信息的描述,是非常轻量级的,创建和销毁的开销比较小。

Opacity继承自RenderObjectWidget,其定义了两个比较关键的函数:


RenderObjectElement createElement();RenderObject createRenderObject(BuildContext context);

这正是我们要找的Element和RenderObject!这里只是定义了创建的逻辑,具体调用的时机我们继续往下看。

Element

在SingleChildRenderObjectWidget可以看到创建了SingleChildRenderObjectElement对象。

Element是Widget的抽象,在Widget初始化的时候,调用Widget.createElement创建,Element持有Widget和RenderObject;BuildOwner通过遍历Element Tree,根据是否标记为dirty,构建RenderObject Tree;在整个视图构建过程中,起到了串联Widget和RenderObject的作用。

RenderObject

Opacity的createRenderObject函数创建了RenderOpacity对象,RenderObject真正提供给Engine层渲染所需要的数据,RenderOpacity的Paint方法中找到了真正绘制的地方:

  void paint(PaintingContext context, Offset offset) {if (child != null) {...context.pushOpacity(offset, _alpha, super.paint);}}    

通过RenderObject,我们可以处理layout、painting以及hit testing。这是我们在自定义Widget处理最多的事情。RenderObject只是定义了布局的接口,并未实现布局模型,RenderBox为我们提供了2D笛卡尔坐标系下的Box模型协议定义,大部分情况下,都可以继承于RenderBox,通过重载实现一个新的layout实现,paint实现,以及点击事件处理等;

Flutter在Layout过程中的优化

Flutter采用一次布局的方式,O(N)的线性时间来做布局和绘制。

如上图所示,在一次遍历中,父节点调用每个子节点的布局方法,将约束向下传递,子节点根据约束,计算自己的布局,并将结果传回给父节点;

RelayoutBoundary优化

当一个节点满足如下条件之一,该节点会被标记为RelayoutBoundary,子节点的大小变化不会影响到父节点的布局:

  • parentUsesSize = false:父节点的布局不依赖当前节点的大小
  • sizedByParent = true:当前节点大小由父节点决定
  • constraints.isTight:大小为确定的值,即宽高的最大值等于最小值
  • parent is not RenderObject:如果父节点不是RenderObject,子节点layout变化不需要通知父节点更新

RelayoutBoundary的标记,子节点大小变化,不会通知父节点重新layout,重新paint,从而提高效率。

Element更新优化

为什么Widget频繁创建销毁不会影响渲染性能呢?

Element定义了updateChild的方法,最早在Element被创建,Framework调用mount的时候,以及RenderObject被标记为needsLayout执行RenderObject.performLayout等场景,会调用Element的updateChild方法;

Element updateChild(Element child, Widget newWidget, dynamic newSlot) {...if (child != null) {...if (Widget.canUpdate(child.widget, newWidget)) {...child.update(newWidget);...}    }
}

对于child和newWidget都不为空的情况,通过Widget.canUpdate来判断当前child Element是否可以更新而非重现创建的方式update。

static bool canUpdate(Widget oldWidget, Widget newWidget) {
return oldWidget.runtimeType == newWidget.runtimeType&& oldWidget.key == newWidget.key;}

我们可以看到Widget.canUpdate的定义,通过runtimeTypekey比较来判断;如果可以更新,更新Element子节点;否则deactivate子节点的Element,根据newWidget创建新的Element。

我们如何自定义Widget

第一个版本的设计

在第一个版本的设计中,我们考虑的比较简单,所有的组件都继承与Object,实现一个build方法,根据DSL转换的nodeData设置Widget的属性:

我们用一个简单的例子来看,我们以最坏的情况来考虑,第一个节点都是match_content属性,每一次Widget创建,我们需要的布局计算:

这样每一次Widget更新,顶部节点的大小计算,都要深度遍历整个树。如果Widget其中一个节点更新,又会怎样呢?

答案是全部重新计算一遍,因为Widget是immutable的,在不断重新创建销毁。在最坏情况,会达到O(N2),可想而知一个长列表会表现如何。

第二个版本的设计

第二个版本,我们选择自定义Widget、Element以及RenderObject;下面是我们一部分组件的类图。

其中虚线框内是我们自定义的Widget组件。从上面的图可以看出,我们自定义的Widget大致分为三种类型:

  • 只能作为叶子节点的Widget:如Image、Text,继承自CustomSingleChildLayout;
  • 可以设置多个子节点的Widget:如FrameLayout、LinearLayout,继承自CustomMultiChildLayout;
  • 可滚动的列表类型的Widget:如ListLayout、PageLayout,继承自CustomScrollView;

在自定义的RenderObject中,对于点击事件以及paint方法,并未做特殊处理,都交由组合的Widget处理。

@overridebool hitTestChildren(HitTestResult result, {Offset position}) {return child?.hitTest(result, position: position) ?? false;}@overridevoid paint(PaintingContext context, Offset offset) {if (child != null) context.paintChild(child, offset);}

如何处理match_content

当前节点的宽高设置为match_content,需要先计算子节点的大小,然后再计算当前节点的大小。

在实现自定义的RenderObject中,我们需要重写performLayout方法;performLayout方法中,主要的需要做的事:

  1. 调用所有子节点的layout方法;
  2. 如果sizedByParent为false,需要设置自己size的大小;

下面以一个child的情况为例(如:Padding),在RenderObject中,对于match_content属性的节点,在调用child layout方法时,将parentUsesSize设置为true;然后size根据child.size设置。

这样做的一个好处,当child的大小变化的时候,自动会将parent设置为needLayout,parent由于被标记为needLayout,会在当前Frame的Pipline中重新layout、paint。当然这样也会带来性能的损耗,这一点需要特别注意。

@overridevoid performLayout() {assert(callback != null);invokeLayoutCallback(callback);if (child != null) {child.layout(constraints, parentUsesSize: true);size = constraints.constrain(child.size);} else {size = constraints.biggest;
}

多child的情况,可以参考RenderSliverList的内部实现。

如何处理match_parent

如果当前节点的宽高设置为match_parent,尽量扩充到父节点大小;这种情况下,在Constraints向下传递的时候,根据父节点的约束,无需子节点计算,就已经知道自己的大小;在RenderObject中为我们提供了一个属性sizedByParent,默认为false,如果属性设置为match_parent,我们会给当前RenderObject的sizedByParent设置为true;这样在Constraints向下传递的时,子节点已经知道自己的大小,无需layout计算,在性能上有所提升。

在RenderObject中,当sizedByParent设置为true,需要重载performResize方法:

@overridevoid performResize() {size = constraints.biggest;}

这里需要注意的一点,这种情况下,在重载performLayout方法时,不要再设置size的大小。

如果绑定的数据发生变化,改变sizedByParent之后,确保调用markNeedsLayoutForSizedByParentChange方法,将当前节点以及他的父节点设置为needsLayout,重新计算布局,重新绘制。

前后方案对比

在第二个版本的设计中,一个Widget渲染,需要怎样一个计算过程呢呢?

相同的场景,在RenderObject中,通过performLayout方法,将Constraints向下传递,child的size计算,并且向上传递,最终一次遍历就可以完成整个树的layout计算。

如果是上面更新的场景又会如何呢?

根据我们上面讲的Element更新过程以及RenderObject的RelayoutBoundary优化,可以看出,有新的Widget属性变化,Element Tree无需重建,更新当前Element节点,RenderObject在RelayoutBoundary的优化下,只需要更少的layout计算。

经过新方案的优化,长列表滑动的平均帧率从28提升到了50左右。

目前存在的问题

目前我们在自定义Widget的实现中,其实还是存在问题的。如果仔细看上面performLayout的实现,我们在调用每个child的layout方法的时候,parentUsesSize都设置为true;实际上只有当前节点属性为match_content的时候,这才是有必要的。目前我们的处理过于简单,导致RelayoutBoundary的优化没有真正享受到。所以目前实际的情况是,每次Widget的更新,都会导致2N次的Layout计算。这也是帧率达不到Flutter页面的其中一个原因,这也是我们接下来要解决的问题。

更多优化方向

经过一系列的优化之后,页面的卡顿情况终于有所改善,卡顿不再特别明显,但整体帧率仍然达不到Flutter页面的效果。仍然需要对Flutter有更深入的理解,挖掘出过多性能优化的点,进一步做一些更精细化的优化。

ListView和ScrollView,在Flutter中都有做性能优化处理。但是对于FrameLayout、LieanrLayout这样有多个child的layout,无法享受ListView提供的性能优化。我们是否可以借鉴ListView的ViewPort的概念,对于超出屏幕的部分,不去做layout、paint渲染。当然这需要考虑Engine层layer缓存等情况,需要后续进一步的研究。

另外在parentData存储,增加数据缓存以减少数据绑定次数方面,以及List嵌套List等复杂情况的优化处理,也都需要不断探索。

展望

目前我们实现了DSL到Widget的映射,这让Flutter动态模板渲染成为了可能。DSL是一种抽象,XML只是其中的一种选择,未来在不断完善性能的同时,还会提升整个方案的抽象,能够支持通用的DSL转换,沉淀一套通用解决方案,更好的通过技术赋能业务。

DSL到Widget的转换只是其中一环,从模板的编辑、本地验证、CDN下发、灰度测试、线上监控等整个闭环,仍然有很多需要不断打磨和完善的地方。


原文链接
本文为云栖社区原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/517844.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

稀疏数组(数据结构)

稀疏数组(数据结构) 需求:编写五子棋游戏中,有存盘和续上盘的功能 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 …

揭秘 Flink 1.9 新架构,Blink Planner 你会用了吗?

本文为 Apache Flink 新版本重大功能特性解读之 Flink SQL 系列文章的开篇,Flink SQL 系列文章由其核心贡献者们分享,涵盖基础知识、实践、调优、内部实现等各个方面,带你由浅入深地全面了解 Flink SQL。 1. 发展历程 今年的8月22日 Apache…

阿里面试官整理的JVM面试要点,99%的你都不知道!

最近网上出现一个面试题:“一个线程OOM后,其他线程还能运行吗?”网上出现了很多答案。这道题其实很有难度,涉及的知识点有jvm内存分配、作用域、gc等,不是简单的是与否的问题。在面试时被问到这个问题你是会哑口无言还…

6 个 K8s 日志系统建设中的典型问题,你遇到过几个?

作者 | 元乙 阿里云日志服务数据采集客户端负责人,目前采集客户端 logtail 在集团百万规模部署,每天采集上万应用数 PB 数据,经历多次双 11、双 12 考验。 导读:随着 K8s 不断更新迭代,使用 K8s 日志系统建设的开发者…

如何加快 Node.js 应用的启动速度

我们平时在开发部署 Node.js 应用的过程中,对于应用进程启动的耗时很少有人会关注,大多数的应用 5 分钟左右就可以启动完成,这个过程中会涉及到和集团很多系统的交互,这个耗时看起来也没有什么问题。 目前,集团 Serve…

技术人看《长安十二时辰》的正确姿势是?

阿里妹导读:从“叉手礼”、“水盆羊汤”、“酒晕妆”这些唐朝人的生活细节,到精美的坊间造型、充满意境的诗词歌赋,《长安十二时辰》不仅以缜密剧情赢得赞誉,更还原了一个真实的大唐长安。在精良制作之上,技术人如何让…

我们已经不用AOP做操作日志了! | 原力计划

来源 | JAVA葵花宝典责编 | 王晓曼、Carol 头图 | CSDN下载自东方IC前言用户在操作我们系统的过程中,针对一些重要的业务数据进行增删改查的时候,我们希望记录一下用户的操作行为,以便发生问题时能及时的找到依据,这种日志就是业务…

会向业务“砍需求”的技术同学,该具备哪6点能力?

阿里妹导读:“会”砍需求,并不是件容易的事情,这涉及到工程师的商业头脑,要会判断技术和业务的关系。技术与业务好比“两条腿”,相互配合才能走得更远。如何具备business sense就是我们今天的课题。 论工程师的商业头…

(进阶篇)Redis6.2.0 集群 主从复制_原理剖析_02

文章目录一、主从复制流程1. 主从复制流程图2. 主从复制日志二、主从复制信息剖析2.1. 主节点信息剖析2.2. 从节点信息剖析三、关键术语3.1. 复制功能开启3.2. 全量复制场景3.3. 主从复制异步性3.4. 过期key的处理3.5. 加速复制一、主从复制流程 1. 主从复制流程图 第一条线&a…

如何抢占云栖大会C位?史上最强强强攻略来了

如何抢占云栖大会C位?史上最强强强攻略来了 原文链接 本文为云栖社区原创内容,未经允许不得转载。

寻找榜样的力量!CSDN【百万人学 AI】评选活动重磅启动

AI 业界历经算法更迭、技术方案升级,有企业攻城略池,占据更多行业山头,有企业中途折戟沉沙。AI 发展浮浮沉沉,但每一年我们都希望审视当下,一窥未来。2020 无疑是特殊的一年,而 AI 在开年的这场”战疫“中表…

重构:改善饿了么交易系统的设计思路

我在2017年5月加入饿了么的交易部门,先后负责搜索、订单、超时、赔付、条约、交付、金额计算以及评价等系统,后期开始做些整体系统升级的工作。 这篇文章成型于交易系统重构一期之后,主要是反思其过程中做决策的思路,我没有使用「…

(进阶篇)Redis6.2.0 集群 主从复制_故障解决_03

文章目录一、 主从数据一致性1. 主多从少2. 主少从多3. 知识点补充二、 数据延迟2.1. 数据延迟因素2.2. 解决方案三、 脏数据3.1. 脏数据产生的场景3.2. 解决方案四、 数据安全性4.1. 场景4.2. 解决方案五、 规避全量复制5.1. 低峰时段5.2. 主节点变更5.3. 增大复制缓冲区六、 …

以“基”取胜:青立方超融合易捷版,助力企业“极简”上云

2020年春天,以云计算、5G、人工智能为代表的“新基建”蔚然成风,不仅助力中国产业智能化、信息化进入加速推进的快车道,促使全产业链迈开高质量发展的新步伐。更是面向长远,构筑数字经济创新发展之基。可以说,没有任何…

从零开始入门 K8s| K8s 的应用编排与管理

一、资源元信息 1. Kubernetes 资源对象 我们知道,Kubernetes 的资源对象组成:主要包括了 Spec、Status 两部分。其中 Spec 部分用来描述期望的状态,Status 部分用来描述观测到的状态。 今天我们将为大家介绍 K8s 的另外一个部分&#xff0c…

创建对象内存分析

创建对象内存分析 package com.oop.demo03;public class Pet {public String name;public int age;public void shout(){System.out.println("叫了一声");}}/* //一个项目应该这存在一个main方法 public class Application {public static void main(String[] args) …

AliOS Things 维测典型案例分析 —— 内存泄漏

维测典型案例分析1 —— 内存泄漏 在系统运行的过程中,内存泄漏是较为常见但是很难复现的现象,一般的内存泄漏点都是比较隐蔽的,每次几十个字节的泄漏,往往需要压测很久才能复现问题。本节案例分析,我们从一个已经压测…

(进阶篇)Redis6.2.0 集群 哨兵模式_搭建_01

文章目录一、概念架构简述1. Redis Sentinel简述2. Redis Sentinel优点3. Redis Sentinel缺点二、redis 3节点2.1. 101节点配置2.2. 102节点配置2.3. 103节点配置三、哨兵搭建实现3.1. 101节点配置3.2. 102节点配置3.3. 103节点配置3.4. 启动哨兵3.5. sentinel 监控3.6. 哨兵验…

服务器软件大扫盲!

来源 | 沉默王二责编 | Carol头图 | CSDN下载自视觉中国先说一句哈,自从在 B 站开始刷视频后,我就觉得要学的内容实在是太多了。这篇“服务器软件大扫盲”就是我看了羊哥的一期视频后有感而发的,比如说 Web 服务器、HTTP 服务器、应用服务器这…

Flutter浪潮下的音视频研发探索

导读:本文来自 LiveVideoStack 线上分享第三季,第十期阿里巴巴闲鱼事业部无线开发专家陈炉军带来的分享内容,针对闲鱼APP在当下流行的跨平台框架Flutter的大规模实践,介绍其在音视频领域碰到的一些困难以及解决方案。 大家好&…