从电源问题出发,带你揭秘新体系结构范式 COA

简介: 本文整理自 2020 年云原生微服务大会主论坛白海石的分享《Capability Oriented Architecture for cloud and edge》,主要介绍了一种新的体系结构范式——面向能力的体系结构(COA),旨在为跨云和边缘的分布式、自适应和健壮的应用程序提供一个设计框架。

824头图.png

作者 | 白海石  微软云计算与边缘计算部门架构师、程序员

导读:本文整理自 2020 年云原生微服务大会主论坛白海石的分享《Capability Oriented Architecture for cloud and edge》,主要介绍了一种新的体系结构范式——面向能力的体系结构(COA),旨在为跨云和边缘的分布式、自适应和健壮的应用程序提供一个设计框架。

公众号后台回复 818 即可获取直播回看地址和大会 PPT 合集。

前言

很高兴有这个机会和大家分享我们总结的关于边缘计算的架构模式,也就是我们所说的基于能力的系统架构 —— COA。

什么是 COA 呢?我想通过一个很普遍的问题——电源问题来解释。电源问题一直是移动电脑,特别是手机用户体验的一个关键问题。我想每个人都有过因为手机电量低而带来不便的经历,有的人甚至告诉我,光看到这张图片,就会引起某种不适。

1.jpg

那么我们是怎么解决这个问题的呢?获得持续的电力供应,是手机运转的一个基本要求。

2.PNG

我想每个人对上面这些图片都不会陌生,机场的充电站、五花八门的充电宝以及各种各样的共享电源。解决手机的供电是一个问题,那为什么我们有这么多不同的方案呢?这是因为手机获得持续电源供应的能力,是一个关键能力,我们必须用各种手段来保证,在各种场景下对手机的持续供电。

手机需要持续的电力供应

3.PNG

如果把这个问题抽象来看,我们可以看到手机获得持续电力供应的能力,是有很多不同的方案来支持的。

比如手机集成的电池,这是基本方案,如果没有,手机也就不是手机了,就变成座机了;充电宝是一个本地方案,因为你手机需要连接在本地的充电宝实例上;而电源插座是基于服务架构的解决方案,你把手机插在插座上,这个插座就是你访问电力公司电力供应服务的接口;而在更极端的情况下,你可能还会用其他的替代电源,比如太阳能板,甚至手摇发电机。

这个例子说明什么呢?它说明对于系统所需的关键能力,比如获得持续电力的能力,我们经常需要多个替代方案来确保能力的存在。比如您的手机没电了,你会在乎你的电源插头插在哪里吗?你会在乎充电宝的形状和颜色吗?这些都不是关键。你需要的就是供电的能力,至于这个能力是不是基于服务的架构,以及这个能力是如何提供的,这都不那么关键。

这个例子让我们思考,在设计程序的时候,能不能提供一种设计语言,让开发者表述系统所需的能力,比如供电,而不是考虑系统能力的交付方式。无论这个能力是通过远程的服务调用本地的容器,或者是局域网的服务代理实现的功能,这些都不重要,这些都是运维的问题,而不是系统设计和开发的问题。我们希望可以总结出一套设计模式,并在此基础上建立一个工具和服务的生态系统,这就是我们提出 COA 这个概念的初衷。需要说明一下,COA 这个概念虽然是我们提出的,但是这种架构并不是我们发明的,COA 是我们基于对现有系统的观察总结,在此基础上,我们定义了 COA 的一些基本部件,以及这些部件可能实施的方式。

智能应用需要持续的人工智能能力

4.PNG

我们再用另外一个例子对 COA 的意义进行说明,这次我们考虑一个需要人工智能支持的程序。人工智能比如脸部识别,交互的方法也很多,您可以用固化或者半固化的硬件,比如 ASIC 或者 FPGA;您也可以通过调用已有程序库或 SDK,比如在进程中调用 url 来进行物品识别;当然您还可以用进程外的方式,比如调用一个本地的 Docker 容器;最后您也可以调用云平台上的服务,比如微软的机器视觉服务等等。

在这个场景中,获得 AI 的能力,比如脸部识别的能力是你所关心的,而这个能力是怎么交付给你的?这也应该是运维的问题。而且 AI 的模型层出不穷,对系统的需求也不一样,把能力交付转化成运维问题,允许您的程序可以被动地甚至主动地调解本身的行为,来适应不同的部署场景。比如我们曾经有一个智能交通灯的系统,在缺省情况下,它把高清晰的视频传到云上进行识别,当发现人行道上有轮椅,它就会延长绿灯的时间,以保证残障人士有充足的时间过马路。但是如果网络带宽不允许,它就会转换成低分辨率的图像,而且如果网络断开了,它就会转到一个本地的模型,本地模型精度差一些,但是还是可以提供持续识别功能的。那么对于这个系统来讲,轮椅的识别是一个必要的能力,这个能力具体是怎么交付的,甚至在运行的过程中是怎么选择的,这个就应该是一个运维问题。

基于能力的系统架构

5.PNG

COA 的理念,就是把运维问题从开发者角度分离,所以 COA 的核心,就是让开发者专注于能力,而不是能力的交付。如果我们有一个对能力的通用的描述、发现和使用的系统,那么我们很多的系统就可以做到平台无关、位置无关、甚至技术无关。以手机充电问题为例:

  • 平台无关:你连到国内的插座和国外的插座这是无关的,至于对不同国家插座的电源、电压以及插座样式的适配,这是运维问题;
  • 位置无关:你用哪个插座哪个充电宝,你的手机在哪,与你程序的设计及开发也是无关的;
  • 技术无关:你的电源是电池,还是火电、水电、核电、太阳能……,这些都无关。

COA 就是把这些能力的实施和交互的方式,彻底地从开发者这里分离出来。

我们从另外一个角度看——运营方面,运营也会有更灵活和更精确的控制。比如你随便选择了一家数据库公司,然后用这个公司的 SDK 来进行开发,结果公司倒闭了,这就是个问题。而 COA 允许你在选择能力供应商时,同时考虑功能性和非功能性的需求。而作为运维,您可以独立评估选择供应商,然后根据不同的部署场景,选择不同的能力供应商。它可能是本地的,也可能是远程的,甚至是人工的,这都不影响程序的架构和代码,同时您也可以灵活选择部署方案。另外您可以用创新性的替代方案来取代原来的方案,回到人工智能问题,大概在一年前,谷歌的 BERT 还很厉害,但现在微软的 GPT-3展现出了无与伦比的能力,有了 COA 您就可以在运营过程中对这个模型进行选择,甚至综合多方的结果提供一个更佳的方案,这些都是一个运维的问题,而不是开发的问题。

能力代理

6.PNG

实现基于能力的系统架构,需要几个重要的系统部件,第一个就是能力代理。能力代理是指通过代理的方式,把能力供应者的细节封装起来。能力代理具有如下功能:

第一,根据环境的变化选取能力的提供者。比如上文提到的轮椅检测方案,根据网络带宽的情况和网络连接的情况,能力代理可以动态地选择不同的能力提供者,然后能力提供者在此基础上可以提供更多的优化功能。

第二,提供本地缓存,不需要所有的服务都是远程调用;它可以批处理,把分散的处理做成小的批次,然后统一提交给服务器;甚至它还可以做一些其他的,例如压缩、加密等中间件的功能。

第三,在本地环境里,比如在一个局域网内,如果能力代理之间可以相互发现,我们就可以实现更高级的功能——伙伴间的动态调用。例如,在智能家居环境中,用普通的手机进行比较复杂的图形计算时,我可以把这个能力临时代理给我的游戏机,通过游戏机的 GPU 功能来进行图像处理,就可以实现伙伴间的动态调用过程。

第四,基于功能性和非功能性需求动态发现提供者。能力代理的发现功能和我们普通所说的服务发现的过程不太一样。因为在发现能力的过程中,我们可以同时考虑功能性和非功能性的需求。比如在发现一个能力供应商的时候,我们不但要考虑系统的性能、表现,甚至供应商本身的资质也是我们考虑的要素。

能力发现

7.PNG

说到能力发现,还要解释它和服务发现有什么不同。传统范畴的服务发现,是基于语法的发现,比如说我要做一个相加的服务,我可能通过服务发现的模式,找到一个相加的服务,它有相加的名字,但是我无法知道相加服务是不是真的在进行加法的计算。

而能力发现模式是由用户来提交他所要实现能力的意图,然后系统根据意图进行语义上的发现,通过发现的过程可以真正发现一个可以进行相加计算的服务。然后我们可以把非功能性的因素也考虑进来,比如它的 SLA、安全性、供应商资质等,所以能力发现实际上是一个比较复杂的系统。

我认为,能力发现应该是一个基于多向量(包括功能性和非功能性向量)的几率发现系统。但是在生产部署环境中,基于几率的发现系统,很可能是不能满足需要的。因此,我们就设计了,在发现之后可以通过一个固化过程,把所发现的供应商,提供成一个特定的能力组合,在能力组合的基础上,您可以提供比较明确的版本的控制和供应商的控制。能力发现也需要我们提供表达用户意图的方式,通过一个通用的词库,基于自然语言的方式来实现对于用户意图的解析。

示例:lets 系统

8.PNG

在 COA 的基础上,我们设想了一个系统——lets,上图展示了用 lets 进行编程的一些示例。

  • 脸部识别:我们可以通过 lets 命令行:lets detect face→输入图片→输出图片,系统就可以对输入图片进行脸部识别,然后再输出图片上叠加脸部的方框;
  • 物品追踪:在 python 里进行物品追踪,需要导入 lets 程序包,然后 lets track orange,在 cameraStream1 的视频流上进行橙子的追踪;
  • 文字总结:比如用 C# 编程的时候,用 lets class 来调用 summarize(方法:lets summarize 输入文本→产生输出文本),对一段文字进行总结。

这就是我们设想的 lets 系统在使用时在开发者上的体验。大家可以看到,我们把 AI 的能力完全封装在 proxy 的后面,对于开发者来说, AI 的能力到底是远程的服务,还是本地的容器,还是本地的 SDK,这些都不重要。你所需要的就是描述你程序所要实现的功能,然后通过 COA 的 proxy 把这些功能呈现给你的程序。作为运维来说,它可以根据具体的部署场景来选择功能具体的交付方式。

完整 COA 系统架构

9.PNG

完整的 COA 系统,可能还需要很多其他组件,由于篇幅原因,本文只提到了 COA 系统架构的部分组件。COA 并不是我们的发明,而是我们对一些现有程序,特别是一些基于边缘计算的系统模式的总结,我们希望可以和大家一起创建一个比较通用的 COA 架构系统,来实现我们所设想的通用模块,可以使 COA 的应用程序更容易地开发和使用。

 

 

原文链接
本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/515219.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从蜜罐新技术看欺骗防御发展走向

随着攻防演习日益实战化、常态化使得蜜罐从十几年的老安全技术焕发新春,基于蜜罐演进而来的欺骗防御也因此而名声大噪,越来越多的安全厂商已经将资源投入到此技术领域。在最近信通院组织的蜜罐产品能力评测中,参与的主流厂商有36家之多。蜜罐…

对话 Dubbo 唤醒者北纬:3.0 将至,阿里核心电商业务也在用 Dubbo

简介: 如今,Dubbo 已经毕业一年,越来越多开发者开始询问 Dubbo 3.0 到底有哪些变化,阿里巴巴内部到底用不用 Dubbo,这是不是一个 KPI 开源项目以及 Dubbo 和 Spring Cloud 之间到底是什么关系。本文,将独家…

分布式ELK+KAFKA日志采集 docker-compose

文章目录一、安装docker-compose插件1. 下载docker-compose插件2. 赋予权限二、搭建ELKKAFKA环境2.1. 编写docker-compose2.2. 启动docker-compose2.3. 验证效果2.4. 安装logstash三、微信项目投递消息kafka3.1. 微信集成kafka3.2. 配置kafka3.3. aop拦截3.4. 消息投递3.5. 测试…

java安全编码指南之:基础篇

简介: 作为一个程序员,只是写出好用的代码是不够的,我们还需要考虑到程序的安全性。在这个不能跟陌生人说话世界,扶老奶奶过马路都是一件很困难的事情。那么对于程序员来说,尤其是对于开发那种对外可以公开访问的网站的…

Gartner:70%新应用由低代码开发,AI热潮后小数据崛起

作者 | 宋慧 出品 | CSDN云计算 头图 | 付费下载于东方IC 国际研究机构Gartner在近日发布了2021年十大数据和分析趋势。纵观这十个趋势,基本可以归纳为三类主题,分别是: 加速数据和分析变革:运用AI创新、经过改进的可组合性以及…

Sentinel 1.8.0 年度版本发布,熔断降级重构升级!

在经过数月的打磨后,Sentinel 1.8.0 版本正式发布!该版本是本年度最重要的版本之一,包含大量特性改进与 bug 修复,尤其是针对熔断降级特性的完善升级(支持任意统计时长、慢调用比例降级策略、熔断器事件监听&#xff0…

清华大学-美团数字生活联合研究院成立

转载自清华新闻网 4月12日,清华大学-美团数字生活联合研究院(以下简称“清华美团数字生活研究院”)揭牌仪式暨管委会第一次会议在清华大学举行。仪式上,清华大学副校长杨斌与美团联合创始人王慧文共同为联合研究院揭牌。 杨斌表…

SpringCloud 应用在 Kubernetes 上的最佳实践 — 高可用(熔断)

前言 阿里巴巴十多年的双十一,锤炼出来了一套业界领先的高可用技术,有一些已经商业化(云产品 PTS、AHAS),也有的开源了如:Sentinel、ChaosBlade。我们这一系列的高可用章节也主要介绍这方面的内容。今天介…

shadingjdbc实战分表分库

文章目录一、问题汇总1. 水平与垂直拆分之间的区别?2. 单表达到多大量开始进行分库分表?3. 基于客户端与服务端实现分表分库区别?4. 数据库分表分库策略有哪些?5. 自定义范围分表算法实现分表?二、整合ShardingSphere实现分表2.1…

阿里云机器学习怎么玩?这本新手入门指南揭秘了!

想知道我是怎样免费在阿里云上玩机器学习的吗? 不慌,这就告诉你答案~ 它来了--阿里云向个人免费开放云端深度学习开发环境DSW(DataScienceWorkshop),还有免费GPU资源可以使用,实验的数据还会免费保存30天&a…

华为庞鑫:闪存3.0时代,四大变化激发全闪存数据中心潜能释放

从2005年到2019年间,中国数字经济总体规模由2.6万亿元增加至35.8万亿元,数字经济在GDP的占比也由14.2%提升至36.2%。随着数字经济蓬勃发展,数据也成为当之无愧的关键生产要素,是基础性资源和战略性资源。数据洪流的到来进一步驱动…

基于RabbitMQ订单未支付30分钟自动取消

文章目录一、原理实现1. 超时消费流程图2. 死信队列的架构原理3. 订单超时30分钟实现原理二、核心代码实战2.1. 记录订单待支付数据2.2. 超时消费者监听2.3. 订单核对校验一、原理实现 1. 超时消费流程图 2. 死信队列的架构原理 相同点: 死信队列和普通队列区别不…

蚂蚁mPaaS:有人修建高楼,有人重构城市

简介: 纵览这时代的先声,在高楼之巅,在海天之外。 2018年2月,春运拉开序幕。 这是人类史上最大规模的迁徙活动,3.82亿人坐进车厢,被31万趟车次送往不同的目的地。如果有一台摄影机从高空对准中国大地&…

全场景闪存加速、全场景数据保护,华为助力医院实现智能化转型

数字经济时代的来临,是影响当今医疗健康服务领域最重要的大趋势。在这种大背景下,新时期的智能医疗必将在医疗行业内掀起一阵浪潮。2020年,新冠疫情的肆虐势必推进浪潮的提前到来。 首都医科大学附属北京同仁医院,始建于1886年&a…

从Cloudflare事件,看DNS服务的重要性

简介: 美国时间7月17日,美国知名的网络安全服务提供商Cloudflare,出现了突发网络服务故障。通过这个事件,和大家聊聊关于网络安全稳定的思考,以及稳定、安全的DNS服务的重要性。 7.17事件 美国时间7月17日下午&#…

基于Redis订单未支付30分钟自动取消

文章目录一、原理实现1. 超时消费流程图2. 订单超时30分钟实现原理二、核心代码实战2.1. 记录订单待支付数据2.2. redis配置2.3. 超时消费者监听一、原理实现 1. 超时消费流程图 2. 订单超时30分钟实现原理 ①用户下单之后,投递一个订单号码存放到redis服务端&…

面向 K8s 设计误区

作者 | 姬望来源 | 阿里巴巴中间件头图 | 下载于视觉中国K8s 设计模式Kubernetes 是一个具有普遍意义的容器编排工具,它提供了一套基于容器构建分布式系统的基础依赖,其意义等同于 Linux 在操作系统中的地位,可以认为是分布式的操作系统。自定…

安装docker-compose插件

文章目录一、安装docker-compose插件1. 下载docker-compose插件2. 赋予权限3. 验证一、安装docker-compose插件 1. 下载docker-compose插件 curl -L https://github.com/docker/compose/releases/download/1.23.2/docker-compose-$(uname -s)-$(uname -m) -o /usr/local/bin/…

突围数字化转型,让特步同比增长24.8%的全渠道中台

简介: 多年前,曾有媒体向丁水波提问:“对于你个人来说,转型过程中最痛苦的部分是什么?”“最关键的是市场意识的转变。耳听为虚眼见为实,做起来给外界看到了,他们才会明白和接受。很多东西得做完…

赠书 | 什么是 Knative?

作者 | 李志伟、游杨来源 | 华章计算机头图 | 下载于视觉中国✎ 导读 什么是Knative?本文将对Knative的产生背景及发展历程,架构设计,受众群体等做详细介绍。Knative是由谷歌发起,有Pivotal、IBM、Red Hat等公司共同参与开发的Ser…