openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读

 打印一个图片可以做出一个函数:

def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

1、轮廓特征与近似

1.1 轮廓特征

前面我们计算了这个图片的轮廓:

 它的轮廓信息保存在了contours中,取出第一个轮廓,计算相关参数:

cnt = contours[0]
cv2.contourArea(cnt)
cv2.arcLength(cnt,True)

打印结果:

8500.5 
437.9482651948929

这是分别求出了周长和面积,这里的True表示的是否是闭合的。 

1.2 轮廓近似

 

如图,第一个图是原图,如果将它的轮廓计算出来应该是第三个图的结果,但是我不想要这样一些带坑坑洼洼的结果,我只想要图2这样的结果呢?

原图中含有一些曲线,比如有一条曲线,这条曲线有A、B两个点,先将这两个点连上,在曲线中选到一个C点,使得这个C点到AB这条直线上距离最大,如果这个距离d小于指定的阈值t,那么这个AB直线就可以当做曲线的近似了。

那如果大于设定的阈值呢?那么曲线就会被分解成两个部分变成两个曲线,AC和BC,然后AC和BC继续去做前面的判断操作一直到找到近似直线。

但是在代码的实现却非常简单:

img = cv2.imread('contours2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

每行代码的意思:

  1. 读进来图像,还是前面的图像
  2. 做二值处理
  3. 找轮廓信息 
  4. 找出第一个轮廓
  5. 深度复制图像
  6. 提取轮廓信息
  7. 将轮廓图像打印

打印结果: 

 接下来做轮廓近似的处理:

epsilon = 0.1*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

关键代码:approx = cv2.approxPolyDP(cnt,epsilon,True)

cv2.approxPolyDP这是计算轮廓的函数,第一个参数表示计算的轮廓,第二个是指定的阈值,这个阈值是自己指定的,一般通过周长来计算,所以approx是计算的轮廓信息,再用cv2.drawContours将轮廓拟合出来,打印图像。

打印结果:

 这就是近似完的结果,这里可以调整前面计算周长的权重0.1多执行几次,这个值指定的越小结果越接近原始轮廓。

1.3 边界矩阵

 继续用上面的图片,如何将一个轮廓的外接矩形标出来呢?不废话直接上代码:

img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[5]x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

前面几行都已经学习过了,直接看到这里

x,y,w,h = cv2.boundingRect(cnt)

cnt是轮廓信息,通过cv2.boundingRect可以计算出四个值x,y,w,h,一个坐标加上长宽,有这个信息就可以得到一个确定的矩形。

通过这个函数cv2.rectangle,依次传进去图像,坐标1,坐标2,颜色,线条宽度,拟合出这个轮廓

打印结果:

 计算外接矩形和原始图形的面积比值:

area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

第一行是计算原始面积,第二行+第三行计算外接矩形的面积,然后计算比值打印出来:

轮廓面积与边界矩形比 0.5154317244724715

外接圆:

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

 

2、模板匹配方法

模板匹配在openCV中是非常重要的内容,和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1) 

如图这是两个图片,我需要做的是将lena脸的部分框出来,然后右图相当于是标签,假如左图是一个9*9的图像,右图是一个3*3的图像,那么左图可以分解成9个3*3的图像,将右图与这9个区域的图像进行比对,通过计算两个图像的像素匹配程度来判断是这9个区域的那一个区域,9个区域就是从左至右从上至下一个一个进行匹配。

那这个匹配程度怎么计算呢,openCV提供了多种方法来计算,比如计算对应位置之间的像素值差异,差异值就是量化匹配程度,当然差异值越小说明匹配程度越接近。具体的匹配方法:

  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关

这里给出一个openCV官网链接,是上面这些匹配方法的计算公式:

OpenCV: Object Detection

分别将lena和模板(lena的脸)读进来,转化为灰度图后打印出大小:

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2]
print(img.shape)
print(template.shape)

h和w是模板的长和宽,打印的shape值为:

(263, 263)

(110, 85)

 调用模板匹配操作:

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
print(res.shape)

methods是所有方法

 cv2.matchTemplate的参数分别为原始图像、模板、匹配方法

然后打印shape值

打印结果:

(154, 179)

这里的154=263-110+1,179=263-85+1

用这个结果去定位一下最小损失的那个像素点的位置:

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val, max_val, min_loc, max_loc)

 打印结果:

39168.0

74403584.0

(107, 89)

(159, 62)

在这个匹配方法中,我们需要的是min_loc,这个点的坐标再加上模板的长宽,就可以得到我们想要框住的区域了。

3、模板匹配效果

用6种不同的匹配方法进行模板匹配,看下结果的差异:

for meth in methods:img2 = img.copy()# 匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 画矩形cv2.rectangle(img2, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.xticks([]), plt.yticks([])  # 隐藏坐标轴plt.subplot(122), plt.imshow(img2, cmap='gray')plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()

对这个代码块逐行解释:

  1. for循环
  2. 深度复制图像
  3. 取出当前匹配方法名称(前面有一个数组存了全部的6个方法)(加上eval的原因是不能传进来一个字符串)
  4. 计算一个结果
  5. 找出最好结果和最坏结果的差异程度值和坐标
  6. 判断当前方法是算最小值为最佳结果还是最大值为最佳结果
  7. 6已解释
  8. 6已解释
  9. 6已解释
  10. 计算出右下角的坐标
  11. 通过对焦的两个点的坐标画出一个矩形将目标区域框出来
  12. 后面全是将结果打印出来

打印结果几乎都是一样的,就只列出一个了:

 左边的图好理解,就是将lena的脸框出来了,我们完成了任务,右边就是计算出了一个最亮的位置也就是前面res变量的输出结果。

没有加上归一化操作的结果会稍微差点。

同样的道理我们做一下多个模板的匹配,比如一张图上有多个模板需要全部框出来:

img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):  # *号表示可选参数bottom_right = (pt[0] + w, pt[1] + h)cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

打印结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/51520.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue element-ui 菜单管理使用图标选择器组件

目录 🌟前言🌟安装🌟main.js配置🌟页面使用🌟效果展示 🌟前言 哈喽小伙伴们,本文为大家介绍一下 VueElementUI 中图标选择器组件的使用方法;一起来看下吧。 🌟安装 np…

一个程序员的工作日记--每天就干两件事,一年后让别人刮目相看

文章目录 成功源于专注一、早上布局二、晚上复盘三、技术细节四、专注与成功五、专注的重要性六、忙碌和赚钱七、结论以嵌入式开发为例:一、早上布局二、晚上复盘三、技术细节四、专注与成功五、忙碌和赚钱六、结论在嵌入式软件开发中,我们需要按照以下步…

Kubernetes(K8S)使用PV和PVC做存储安装mysql

Kubernetes使用PV和PVC做存储安装mysql 环境准备什么是PV和PVC环境准备配置nfs安装nfs配置nfs服务端 创建命名空间配置pv和pvcpv的yaml文件pvc的yaml文件 部署mysql创建mysql的root密码的secret创建mysql部署的yaml部署mysql链接mysql外部链接内部链接 环境准备 首先你需要一个…

redux中间件理解,常见的中间件,实现原理。

文章目录 一、Redux中间件介绍1、什么是Redux中间件2、使用redux中间件 一、Redux中间件介绍 1、什么是Redux中间件 redux 提供了类似后端 Express 的中间件概念,本质的目的是提供第三方插件的模式,自定义拦截 action -> reducer 的过程。变为 actio…

【JavaEE基础学习打卡06】JDBC之进阶学习PreparedStatement

目录 前言一、PreparedStatement是什么二、重点理解预编译三、PreparedStatement基本使用四、Statement和PreparedStatement比较1.PreparedStatement效率高2.PreparedStatement无需拼接参数3.PreparedStatement防止SQL注入 总结 前言 📜 本系列教程适用于JavaWeb初学…

SpringMVC探秘: 实现MVC模式的Web应用

文章目录 1. SpringMVC概述1.1. 什么是SpringMVC?1.1.1. MVC与SpringMVC 1.2. SpringMVC项目的优势 2. SpringMVC项目的创建与使用2.1. 创建SpringMVC项目2.2. 设置路由2.3. 获取参数2.3.1. 获取一个参数2.3.2. 获取多个参数2.3.3. 获取日期参数2.3.4. 参数重命名Re…

mac地址、ip地址、子网掩码、端口

1. mac地址 又称为网络适配器或者网络接口卡NIC,但是现在更多人原因使用更简单的名称"网卡",通过网卡能够是不同的计算机之间相互连接,从而完成数据通信的功能 每一个网卡在出厂的时候 都会给分配到一个编号,类似与身份…

CSS中的vertical-align属性

vertical-align 1.CSS属性 - vertical-align 2.深入理解vertical-align – line boxes This property affects the vertical positioning inside a line box of the boxes generated by an inline-levelelement. 官方文档的翻译:vertical-align会影响 行内块级元素…

Android | 关于 OOM 的那些事儿

作者:345丶 前言 Android 系统对每个app都会有一个最大的内存限制,如果超出这个限制,就会抛出 OOM,也就是Out Of Memory 。本质上是抛出的一个异常,一般是在内存超出限制之后抛出的。最为常见的 OOM 就是内存泄露(大量…

Prompt-“设计提示模板:用更少数据实现预训练模型的卓越表现,助力Few-Shot和Zero-Shot任务”

Prompt任务(Prompt Tasks) 通过设计提示(prompt)模板,实现使用更少量的数据在预训练模型(Pretrained Model)上得到更好的效果,多用于:Few-Shot,Zero-Shot 等…

Spring Boot(Vue3+ElementPlus+Axios+MyBatisPlus+Spring Boot 前后端分离)【二】

😀前言 本篇博文是关于Spring Boot(Vue3ElementPlusAxiosMyBatisPlusSpring Boot 前后端分离)【二】的,希望你能够喜欢 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文…

adb shell setprop 、开发者选项

App性能调试详解 Android App性能监控工具 更多系统属性参考 一、开启 GPU Render 的profiling bar: Gpu渲染速度 adb shell setprop debug.hwui.profile true adb shell setprop debug.hwui.profile visual_bars adb shell setprop debug.hwui.profile visual…

基于5G边缘网关的储能在线监测方案

近年以来,光伏、风力、水力发电等产业发展迅速,新能源在电力市场的占比持续增加,已经成为电力系统的重要组成部分。但由于光伏、风力、水力等发电方式存在天然的波动性,因此也需要配套储能、蓄能系统,保障新能源运行和…

股票预测和使用LSTM(长期-短期-记忆)的预测

一、说明 准确预测股市走势长期以来一直是投资者和交易员难以实现的目标。虽然多年来出现了无数的策略和模型,但有一种方法最近因其能够捕获历史数据中的复杂模式和依赖关系而获得了显着的关注:长短期记忆(LSTM)。利用深度学习的力…

UE4/5Niagara粒子特效之Niagara_Particles官方案例:2.4->3.2

之前的案例 UE4/5Niagara粒子特效之Niagara_Particles官方案例:1.1->1.4_多方通行8的博客-CSDN博客 UE4/5Niagara粒子特效之Niagara_Particles官方案例:1.5->2.3_多方通行8的博客-CSDN博客 2.4 Location Events 这次的项目和之…

自动化测试之Selenium

自动化测试Selenium介绍环境搭建如何操作浏览器定位元素css类选择器定位元素xpath定位元素css选择语法xpath选择语法 常用操作添加等待打印信息浏览器更多操作键盘事件鼠标事件特殊场景只选复选框iframe标签下拉框处理弹窗显示上传文件 关闭浏览器切换窗口截图 自动化测试 自动…

JavaSE 认识String类

目录 1 创建字符串2 字符串比较相等3 字符串常量池4 理解字符串不可变5 字符、字节与字符串5.1 字符与字符串5.2 字节与字符串5.3 小结 6 字符串常见操作6.1 字符串比较6.2 字符串查找6.3 字符串替换6.4 字符串拆分6.5 字符串截取6.6 其他操作方法 7 StringBuffer 和 StringBui…

【Linux】文件的描述符和重定向

文件的描述符和重定向 C语言的文件读写操作代码 open系统打开文件方法系统读写文件操作文件描述符文件重定向怎么理解文件缓冲区 C语言的文件读写操作 文件写入 fputs int fputs(const char *s, FILE *stream); s:要写入的字符串 stream:要写入对应的目标…

TCP最大连接数问题总结

最大TCP连接数量限制有:可用端口号数量、文件描述符数量、线程、内存、CPU等。每个TCP连接都需要以下资源,如图所示: 1、可用端口号限制 Q:一台主机可以有多少端口号?端口号与TCP连接?是否能修改&#x…

echarts 之 科技感进度条

1.图片展示 2.代码实现 /* ng qty 进度条 */ <template><div class"ngqty-progress"><div class"ngqty-info"><span>X4</span><span>50%</span></div><div :id"barNgQtyProgress index" c…