openCV实战-系列教程7:轮廓检测2与模板匹配(轮廓检测/轮廓特征/轮廓近似/轮廓边界矩阵/轮廓边界圆/模版匹配)、原理解析、源码解读

 打印一个图片可以做出一个函数:

def cv_show(img,name):cv2.imshow(name,img)cv2.waitKey()cv2.destroyAllWindows()

1、轮廓特征与近似

1.1 轮廓特征

前面我们计算了这个图片的轮廓:

 它的轮廓信息保存在了contours中,取出第一个轮廓,计算相关参数:

cnt = contours[0]
cv2.contourArea(cnt)
cv2.arcLength(cnt,True)

打印结果:

8500.5 
437.9482651948929

这是分别求出了周长和面积,这里的True表示的是否是闭合的。 

1.2 轮廓近似

 

如图,第一个图是原图,如果将它的轮廓计算出来应该是第三个图的结果,但是我不想要这样一些带坑坑洼洼的结果,我只想要图2这样的结果呢?

原图中含有一些曲线,比如有一条曲线,这条曲线有A、B两个点,先将这两个点连上,在曲线中选到一个C点,使得这个C点到AB这条直线上距离最大,如果这个距离d小于指定的阈值t,那么这个AB直线就可以当做曲线的近似了。

那如果大于设定的阈值呢?那么曲线就会被分解成两个部分变成两个曲线,AC和BC,然后AC和BC继续去做前面的判断操作一直到找到近似直线。

但是在代码的实现却非常简单:

img = cv2.imread('contours2.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[0]draw_img = img.copy()
res = cv2.drawContours(draw_img, [cnt], -1, (0, 0, 255), 2)
cv_show(res,'res')

每行代码的意思:

  1. 读进来图像,还是前面的图像
  2. 做二值处理
  3. 找轮廓信息 
  4. 找出第一个轮廓
  5. 深度复制图像
  6. 提取轮廓信息
  7. 将轮廓图像打印

打印结果: 

 接下来做轮廓近似的处理:

epsilon = 0.1*cv2.arcLength(cnt,True) 
approx = cv2.approxPolyDP(cnt,epsilon,True)draw_img = img.copy()
res = cv2.drawContours(draw_img, [approx], -1, (0, 0, 255), 2)
cv_show(res,'res')

关键代码:approx = cv2.approxPolyDP(cnt,epsilon,True)

cv2.approxPolyDP这是计算轮廓的函数,第一个参数表示计算的轮廓,第二个是指定的阈值,这个阈值是自己指定的,一般通过周长来计算,所以approx是计算的轮廓信息,再用cv2.drawContours将轮廓拟合出来,打印图像。

打印结果:

 这就是近似完的结果,这里可以调整前面计算周长的权重0.1多执行几次,这个值指定的越小结果越接近原始轮廓。

1.3 边界矩阵

 继续用上面的图片,如何将一个轮廓的外接矩形标出来呢?不废话直接上代码:

img = cv2.imread('contours.png')gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)
contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
cnt = contours[5]x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
cv_show(img,'img')

前面几行都已经学习过了,直接看到这里

x,y,w,h = cv2.boundingRect(cnt)

cnt是轮廓信息,通过cv2.boundingRect可以计算出四个值x,y,w,h,一个坐标加上长宽,有这个信息就可以得到一个确定的矩形。

通过这个函数cv2.rectangle,依次传进去图像,坐标1,坐标2,颜色,线条宽度,拟合出这个轮廓

打印结果:

 计算外接矩形和原始图形的面积比值:

area = cv2.contourArea(cnt)
x, y, w, h = cv2.boundingRect(cnt)
rect_area = w * h
extent = float(area) / rect_area
print ('轮廓面积与边界矩形比',extent)

第一行是计算原始面积,第二行+第三行计算外接矩形的面积,然后计算比值打印出来:

轮廓面积与边界矩形比 0.5154317244724715

外接圆:

(x,y),radius = cv2.minEnclosingCircle(cnt) 
center = (int(x),int(y)) 
radius = int(radius) 
img = cv2.circle(img,center,radius,(0,255,0),2)
cv_show(img,'img')

 

2、模板匹配方法

模板匹配在openCV中是非常重要的内容,和卷积原理很像,模板在原图像上从原点开始滑动,计算模板与(图像被模板覆盖的地方)的差别程度,这个差别程度的计算方法在opencv里有6种,然后将每次计算的结果放入一个矩阵里,作为结果输出。假如原图形是AxB大小,而模板是axb大小,则输出结果的矩阵是(A-a+1)x(B-b+1) 

如图这是两个图片,我需要做的是将lena脸的部分框出来,然后右图相当于是标签,假如左图是一个9*9的图像,右图是一个3*3的图像,那么左图可以分解成9个3*3的图像,将右图与这9个区域的图像进行比对,通过计算两个图像的像素匹配程度来判断是这9个区域的那一个区域,9个区域就是从左至右从上至下一个一个进行匹配。

那这个匹配程度怎么计算呢,openCV提供了多种方法来计算,比如计算对应位置之间的像素值差异,差异值就是量化匹配程度,当然差异值越小说明匹配程度越接近。具体的匹配方法:

  • TM_SQDIFF:计算平方不同,计算出来的值越小,越相关
  • TM_CCORR:计算相关性,计算出来的值越大,越相关
  • TM_CCOEFF:计算相关系数,计算出来的值越大,越相关
  • TM_SQDIFF_NORMED:计算归一化平方不同,计算出来的值越接近0,越相关
  • TM_CCORR_NORMED:计算归一化相关性,计算出来的值越接近1,越相关
  • TM_CCOEFF_NORMED:计算归一化相关系数,计算出来的值越接近1,越相关

这里给出一个openCV官网链接,是上面这些匹配方法的计算公式:

OpenCV: Object Detection

分别将lena和模板(lena的脸)读进来,转化为灰度图后打印出大小:

# 模板匹配
img = cv2.imread('lena.jpg', 0)
template = cv2.imread('face.jpg', 0)
h, w = template.shape[:2]
print(img.shape)
print(template.shape)

h和w是模板的长和宽,打印的shape值为:

(263, 263)

(110, 85)

 调用模板匹配操作:

methods = ['cv2.TM_CCOEFF', 'cv2.TM_CCOEFF_NORMED', 'cv2.TM_CCORR','cv2.TM_CCORR_NORMED', 'cv2.TM_SQDIFF', 'cv2.TM_SQDIFF_NORMED']
res = cv2.matchTemplate(img, template, cv2.TM_SQDIFF)
print(res.shape)

methods是所有方法

 cv2.matchTemplate的参数分别为原始图像、模板、匹配方法

然后打印shape值

打印结果:

(154, 179)

这里的154=263-110+1,179=263-85+1

用这个结果去定位一下最小损失的那个像素点的位置:

min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
print(min_val, max_val, min_loc, max_loc)

 打印结果:

39168.0

74403584.0

(107, 89)

(159, 62)

在这个匹配方法中,我们需要的是min_loc,这个点的坐标再加上模板的长宽,就可以得到我们想要框住的区域了。

3、模板匹配效果

用6种不同的匹配方法进行模板匹配,看下结果的差异:

for meth in methods:img2 = img.copy()# 匹配方法的真值method = eval(meth)print (method)res = cv2.matchTemplate(img, template, method)min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)# 如果是平方差匹配TM_SQDIFF或归一化平方差匹配TM_SQDIFF_NORMED,取最小值if method in [cv2.TM_SQDIFF, cv2.TM_SQDIFF_NORMED]:top_left = min_locelse:top_left = max_locbottom_right = (top_left[0] + w, top_left[1] + h)# 画矩形cv2.rectangle(img2, top_left, bottom_right, 255, 2)plt.subplot(121), plt.imshow(res, cmap='gray')plt.xticks([]), plt.yticks([])  # 隐藏坐标轴plt.subplot(122), plt.imshow(img2, cmap='gray')plt.xticks([]), plt.yticks([])plt.suptitle(meth)plt.show()

对这个代码块逐行解释:

  1. for循环
  2. 深度复制图像
  3. 取出当前匹配方法名称(前面有一个数组存了全部的6个方法)(加上eval的原因是不能传进来一个字符串)
  4. 计算一个结果
  5. 找出最好结果和最坏结果的差异程度值和坐标
  6. 判断当前方法是算最小值为最佳结果还是最大值为最佳结果
  7. 6已解释
  8. 6已解释
  9. 6已解释
  10. 计算出右下角的坐标
  11. 通过对焦的两个点的坐标画出一个矩形将目标区域框出来
  12. 后面全是将结果打印出来

打印结果几乎都是一样的,就只列出一个了:

 左边的图好理解,就是将lena的脸框出来了,我们完成了任务,右边就是计算出了一个最亮的位置也就是前面res变量的输出结果。

没有加上归一化操作的结果会稍微差点。

同样的道理我们做一下多个模板的匹配,比如一张图上有多个模板需要全部框出来:

img_rgb = cv2.imread('mario.jpg')
img_gray = cv2.cvtColor(img_rgb, cv2.COLOR_BGR2GRAY)
template = cv2.imread('mario_coin.jpg', 0)
h, w = template.shape[:2]res = cv2.matchTemplate(img_gray, template, cv2.TM_CCOEFF_NORMED)
threshold = 0.8
# 取匹配程度大于%80的坐标
loc = np.where(res >= threshold)
for pt in zip(*loc[::-1]):  # *号表示可选参数bottom_right = (pt[0] + w, pt[1] + h)cv2.rectangle(img_rgb, pt, bottom_right, (0, 0, 255), 2)cv2.imshow('img_rgb', img_rgb)
cv2.waitKey(0)

打印结果:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/51520.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深入理解与实现:哈希算法的Java示例

深入理解与实现:哈希算法的Java示例 哈希算法是计算机科学中的关键概念,用于将输入数据映射到固定长度的哈希值。在本文中,我们将深入介绍哈希算法的原理,讨论常见的哈希函数和哈希表,并提供详细的Java代码示例。 1.…

软考高级系统架构设计师系列论文八十七:论企业应用集成

软考高级系统架构设计师系列论文八十七:论企业应用集成 一、企业应用集成相关知识点二、摘要三、正文四、总结一、企业应用集成相关知识点 软考高级系统架构设计师系列之:企业集成平台技术的应用和架构设计二、摘要 本文讨论了某公司的应用系统集成项目。某公司为了应对市场变…

vue element-ui 菜单管理使用图标选择器组件

目录 🌟前言🌟安装🌟main.js配置🌟页面使用🌟效果展示 🌟前言 哈喽小伙伴们,本文为大家介绍一下 VueElementUI 中图标选择器组件的使用方法;一起来看下吧。 🌟安装 np…

一个程序员的工作日记--每天就干两件事,一年后让别人刮目相看

文章目录 成功源于专注一、早上布局二、晚上复盘三、技术细节四、专注与成功五、专注的重要性六、忙碌和赚钱七、结论以嵌入式开发为例:一、早上布局二、晚上复盘三、技术细节四、专注与成功五、忙碌和赚钱六、结论在嵌入式软件开发中,我们需要按照以下步…

设计模式 -- 策略模式(传统面向对象与JavaScript 的对比实现)

设计模式 – 策略模式(传统面向对象与JavaScript 的对比实现) 文章目录 设计模式 -- 策略模式(传统面向对象与JavaScript 的对比实现)使用策略模式计算年终奖初级实现缺点 使用组合函数重构代码缺点 使用策略模式重构代码传统的面…

Kubernetes(K8S)使用PV和PVC做存储安装mysql

Kubernetes使用PV和PVC做存储安装mysql 环境准备什么是PV和PVC环境准备配置nfs安装nfs配置nfs服务端 创建命名空间配置pv和pvcpv的yaml文件pvc的yaml文件 部署mysql创建mysql的root密码的secret创建mysql部署的yaml部署mysql链接mysql外部链接内部链接 环境准备 首先你需要一个…

redux中间件理解,常见的中间件,实现原理。

文章目录 一、Redux中间件介绍1、什么是Redux中间件2、使用redux中间件 一、Redux中间件介绍 1、什么是Redux中间件 redux 提供了类似后端 Express 的中间件概念,本质的目的是提供第三方插件的模式,自定义拦截 action -> reducer 的过程。变为 actio…

Python 爬虫网页图片下载到本地

您可以使用Python的requests库来获取网页的源码,使用BeautifulSoup库来解析HTML,并使用urllib库来下载图片到本地。下面是一个示例代码: import requests from bs4 import BeautifulSoup import urllib # 获取网页源码 url https://examp…

前端面试:【前端工程化】构建工具Webpack、Parcel和Rollup

嗨,亲爱的前端开发者!在现代Web开发中,前端工程化变得愈发重要。构建工具如Webpack、Parcel和Rollup帮助我们自动化任务、管理依赖、优化性能等。本文将深入探讨这三个前端构建工具,帮助你了解它们的优点和用途。 1. Webpack&…

【JavaEE基础学习打卡06】JDBC之进阶学习PreparedStatement

目录 前言一、PreparedStatement是什么二、重点理解预编译三、PreparedStatement基本使用四、Statement和PreparedStatement比较1.PreparedStatement效率高2.PreparedStatement无需拼接参数3.PreparedStatement防止SQL注入 总结 前言 📜 本系列教程适用于JavaWeb初学…

SpringMVC探秘: 实现MVC模式的Web应用

文章目录 1. SpringMVC概述1.1. 什么是SpringMVC?1.1.1. MVC与SpringMVC 1.2. SpringMVC项目的优势 2. SpringMVC项目的创建与使用2.1. 创建SpringMVC项目2.2. 设置路由2.3. 获取参数2.3.1. 获取一个参数2.3.2. 获取多个参数2.3.3. 获取日期参数2.3.4. 参数重命名Re…

通过SSH协议连接远程服务器(Linux)

能够连接远程服务器的软件有很多,例如MobaXterm、Xshell、PuTTY、SecureCRT等。 以下是在Windows系统上通过SSH协议来连接Linux系统的操作过程: 在Linux系统上打开终端,输入ifconfig命令查看主机名;如果无法执行该命令&#xff…

mac地址、ip地址、子网掩码、端口

1. mac地址 又称为网络适配器或者网络接口卡NIC,但是现在更多人原因使用更简单的名称"网卡",通过网卡能够是不同的计算机之间相互连接,从而完成数据通信的功能 每一个网卡在出厂的时候 都会给分配到一个编号,类似与身份…

【算法】字符匹配算法详解与代码实现

在计算机科学中,字符匹配算法是一种在给定文本中查找特定模式的技术。这些算法在各种应用中都发挥着重要作用,包括文本编辑器、搜索引擎、网络安全和生物信息学等。本文将详细介绍两种常用的字符匹配算法:朴素方法和KMP算法。我们还将提供Pyt…

CSS中的vertical-align属性

vertical-align 1.CSS属性 - vertical-align 2.深入理解vertical-align – line boxes This property affects the vertical positioning inside a line box of the boxes generated by an inline-levelelement. 官方文档的翻译:vertical-align会影响 行内块级元素…

Android | 关于 OOM 的那些事儿

作者:345丶 前言 Android 系统对每个app都会有一个最大的内存限制,如果超出这个限制,就会抛出 OOM,也就是Out Of Memory 。本质上是抛出的一个异常,一般是在内存超出限制之后抛出的。最为常见的 OOM 就是内存泄露(大量…

Prompt-“设计提示模板:用更少数据实现预训练模型的卓越表现,助力Few-Shot和Zero-Shot任务”

Prompt任务(Prompt Tasks) 通过设计提示(prompt)模板,实现使用更少量的数据在预训练模型(Pretrained Model)上得到更好的效果,多用于:Few-Shot,Zero-Shot 等…

vue中实现将页面或者div内容导出为pdf格式

将Vue单页面转成pdf并下载 步骤1:下载对应的库 npm install html2canvas;npm install jspdf --save 步骤2:创建一个htmlToPdf.js的js文件, 然后在main.js中全局引用一下,编写如下代码: // htmlToPdf.js // 导出页面为PDF格式 …

Spring Boot(Vue3+ElementPlus+Axios+MyBatisPlus+Spring Boot 前后端分离)【二】

😀前言 本篇博文是关于Spring Boot(Vue3ElementPlusAxiosMyBatisPlusSpring Boot 前后端分离)【二】的,希望你能够喜欢 🏠个人主页:晨犀主页 🧑个人简介:大家好,我是晨犀,希望我的文…

adb shell setprop 、开发者选项

App性能调试详解 Android App性能监控工具 更多系统属性参考 一、开启 GPU Render 的profiling bar: Gpu渲染速度 adb shell setprop debug.hwui.profile true adb shell setprop debug.hwui.profile visual_bars adb shell setprop debug.hwui.profile visual…