小红书推荐大数据在阿里云上的实践

简介: 本篇内容主要分三个部分,在第一部分讲一下实时计算在推荐业务中的使用场景。第二部分讲一下小红书是怎么使用Flink的一些新的功能。第三部分主要是讲一些OLAP的实时分析的场景,以及和阿里云MC-Hologres的合作。

作者:小红书推荐工程负责人 郭一

小红书推荐业务架构

1.png

首先这个图上画了一些比较典型的推荐业务,使用大数据的主要模块,其中最左边是线上推荐引擎,一般推荐引擎会分成召回、排序、后排等几步,在这里就不细说了。主要是从大数据的角度来说,推荐引擎主要是运用预测模型来预估用户对每个候选笔记的喜欢程度。根据一定的策略来决定给用户推荐哪些笔记。推荐模型在运用时需要抓取笔记特征,这些特征又会回流到我们的训练数据中,来训练新的模型。推荐引擎返回笔记之后,用户对笔记的消费行为,包括展示、点击、点赞等行为,会形成用户的行为流。这些用户行为流结合了特征流,从而产生了模型训练的数据来迭代模型。结合用户和笔记的信息之后,就会产生用户和笔记画像和推荐业务所用到的一些分析报表。
经过一年多的改造,小红书在推荐场景中,除了从分析数据到策略这一块,需要人为参与迭代策略之外,其他的模块的更新基本上是做到了实时或近实时的进行。

推荐业务的实时计算应用

2.png

这里稍微展开讲一下特征和用户行为的数据回流之后的实时计算,以及我们怎么使用他们产生的数据。在推荐引擎产生特征流的时候,特征流因为量特别大,包括了所有推荐返回的笔记,大概有近百篇,以及这些笔记的所有特征,所以这些特征总共大概有大几百个。目前我们的做法是把特征写到一个我们自研的高效的kv中缓存几个小时,然后用户行为数据是从客户端打点回流,然后我们就开始了数据流的处理。
我们第一步是把客户端打点的用户行为进行归因和汇总。这里讲一下什么是归因和汇总。因为在小红书的APP上面,客户端的打点是分页面的,比如说用户在首页推荐中看了笔记并进行了点击,点击之后用户就会跳转到笔记页,然后用户在笔记页上浏览这篇笔记并进行点赞。同时用户可能会点击作者的头像进入作者的个人页,并在个人页中关注了作者。归因是指把这一系列的用户行为都要算作首页推荐产生的行为,而不会和其他的业务混起来。因为搜索用户,在搜索中看到同样一篇笔记,也可能返回同样的结果。所以我们要区分用户的行为到底是由哪一个业务所产生的,这个是归因。

然后汇总指的是用户的这一系列行为,关于同一篇笔记,我们会产生一条汇总的记录,汇总的记录可以便于后续的分析。然后归因之后,会有一个实时的单条用户行为的数据流。而汇总这边,因为有一个窗口期,所以汇总的数据一般会延迟目前大概是20分钟左右。当我们产生归因和汇总的数据流之后,我们就会补充上一些维表的数据,我们会根据用户笔记来找当时我们推荐产生的特征,同时我们也会把一些用户的基础信息和笔记的基础信息加到数据流上。这里面其实主要有4个比较重要的用户场景,第一个场景是产生分业务的Breakdown的信息,这个主要是能知道某一个用户在不同的笔记维度,他的点击率和一些其他的业务指标,同时我也可以知道某一篇笔记针对不同的用户,它产生的点击率,这个是我们在实时推荐当中一个比较重要的特征。另外一个很重要的是我们实时分析的一个宽表,宽表是我们把用户的信息、笔记信息和用户笔记交互的汇总信息,都变成了一个多维度的表,进行实时分析,这个后面会更加详细的和大家讲述。然后还有两个比较重要的,一个是实时训练的信息,训练的信息就是我把用户和笔记交互的信息扩充了,当时排序的时候抓起的特征,这特征加上一些我们汇总出来的标签,就给模型进行训练来更新模型。然后另外一个就是我所有的汇总信息都会进入离线数据数仓,然后会进行后续的一些分析和报表的处理。

流计算优化—Flink批流一体

3.png

然后我这里讲一下我们怎么运用Flink的一些新功能来优化流计算的过程。这里面我主要讲两点,其中第一点就是批流一体化。
刚才说了我们把一个用户的行为根据笔记的行为汇总之后进行分析,这里的汇总的信息其实很多的,汇总信息当中,除了最简单的,比如说用户有没有点赞收藏这篇笔记,其实还有一些比较复杂的标签,比如说用户在笔记页上停留了多长时间,或者是说这篇笔记之前的点击是不是一个有效点击,我们对于某些广告场景或者有些场景下面,我们需要知道如果用户点击之后停留了比如说超过5秒,那么这个点击是有效的。那么像这种复杂的逻辑,我们希望在我们的系统当中只被实现一次,就可以同时运用在实时和批的计算当中。那么在传统意义上这点是很难的,因为大多数的实现中,批和流是两个版本,就是我们在Flink上面,比如说实现了一个版本的有效点击的定义,我们同时也会需要实现一个离线版本的有效点击的定义,这个可能是一个SQL写的版本。那么小红书是运用了FLIP-27里面的一个新的功能,日志文件是一个批的形式,它可以转换成一个流的形式,这样的话我就可以做到代码意义上的批流统一。

流计算优化—Multi-sink Optimization

4.png

那么还有一个Flink的功能就是一个在Flink 1.11上的Multi-sink Optimization。它的意思是我一份数据会写到多个数据应用上去,比如我会同时需要做张用户行为的宽表,同时也生成一份离线的数据。那么Multi-sink Optimization做的是,你只需要从Kafka里面读一次,如果是同一个key的话,他只需要去Lookup一次kv就可以产生多份数据,同时写到多个sink,这样可以大大减少我们对Kafka的压力和对 kv查询的压力。

小红书OLAP典型场景

5.png

最后我讲一下我们的OLAP场景和阿里云MaxCompute、Hologres的一个合作。小红书在推荐业务下面有很多OLAP场景,这里我讲4个比较常见的场景应用,最常见的其实就是根据用户的实验组分组进行比较的一个实时分析。因为我们在推荐业务上面需要大量的调整策略或者是更新模型,然后每次调整策略和更新模型我们都会开一个实验,把用户放到不同的ABtest里面来比较用户的行为。那么一个用户其实在推荐当中会同时处于多个实验,在每一个实验里面是属于一个实验组,我们按实验分组做的实验分析,主要就是把一个实验拿出来,然后把用户的行为和汇总数据,根据这个实验当中的实验组进行分维度的分析,看看不同的实验组它的用户指标有什么差别。然后这个场景是一个非常常见的场景,但是也是计算量非常大的场景,因为它需要根据用户的实验tag进行分组。
然后另外一个场景就是我们小红书的推荐其实是跑在了多个数据中心上面,不同的数据中心经常有一些变动,比如说是运维的变动,我们要起一个新的服务,或者是我们可能有些新的模型需要在某个计算中心先上线,那么我们需要一个端到端的方案去验证不同的数据中心之间的数据是不是一致,用户在不同数据中心的体验是不是一样。这个时候就需要我们根据不同的数据中心进行比较,比较用户在不同的数据中心当中产生的行为,他们最终的指标是不是一致,同样我们也用到了我们的模型和代码的发布当中。我们会看一个模型发布或者一份代码发布的老版本和新版本,他们产生的用户的行为的指标对比,看他们是不是一致。同样我们的OLAP还用在了实时业务指标的告警,如果用户的点击率和用户的点赞数突然有一个大幅的下降,也会触发我们的实时的告警。

小红书OLAP数据的规模

6.png

在高峰时候我们大概每秒钟有35万条用户行为被记入我们的实时计算当中。然后我们大宽表大概有300个字段,然后我们希望能够保持两周多大概15天左右的数据,因为我们在做实验分析的时候,经常需要看本周和上一周的数据的对比,然后我们大概每天有近千次的查询。

小红书+Hologres

7.png
我们在7月和阿里云的MaxComputer和Hologres进行了一个合作。Hologres其实是新一代的智能数仓的解决方案,它能够把实时和离线的计算都通过一站式的方法来解决。同时它的应用主要可以用在实时大屏、Tableau和数据科学当中,我们研究下来是比较适合我们的推荐场景的。

小红书Hologres应用场景

8.png
Hologres做的事情主要是对离线的数据进行了查询和加速,然后对离线的数据做表级别的交互查询响应,他就无须再做从离线把数据搬到实时数仓的这么一个工作,因为它都在里面了。整个实时数仓,它是通过搭建用户洞察体系,实时监控平台的用户数据,可以从不同的角度对用户进行实时诊断,这样可以帮助实施精细化的运营。这个其实对于我们用户大宽表来说也是一个非常适合的场景。然后它的实时离线的联邦计算可以基于实时计算引擎和离线数仓MaxCompute交互分析,实时离线联邦查询,构筑全链路精细化运营。

Hologres VS  Clickhouse

9.png

在和阿里云MaxCompute合作之前,我们是自建了Clickhouse的集群,当时我们也是一个很大规模的集群,一共用了1320个core,因为Clickhouse它不是一个计算存储分离的方案,所以当时我们为了节约成本,只存放了7天的数据,然后因为Clickhouse对于用户实验tag这个场景其实没有很好的优化,所以说我们当时查询超过三天的数据就会特别慢。因为是个OLAP场景,我们希望每次用户的查询能在两分钟之内出结果,所以是限制了我们只能查过去三天的数据。同时另外还有一个问题就是Clickhouse对于组件的支持是有些问题的,所以我们没有在Clickhouse集群上面配置组件,如果上游的数据流有些抖动,数据造成一些重复的情况下,下游的Clickhouse里面其实会有一些重复的数据。同时我们也是派了专人去运维Clickhouse,然后我们通过调研发现,Clickhouse如果你要做成集群版的话,它的运维成本还是很高的。所以我们在7月份的时候和阿里云合作,把我们推荐的一个最大的用户宽表迁移到了MaxCompute和Hologres上面,然后我们在Hologres上面一共是1200个core,因为它是计算存储的方案,所以1200个core就足够我们使用了。但是我们在存储的方面是有更大的需求的,我们一共存了15天的数据,然后因为Hologres对于用户根据实验分组这个场景是做了一些比较定制化的优化,所以说我们现在可以轻松地查询7天到15天的数据,在这个根据实验组分组的场景下面,其查询的性能与Clickhouse相比是有大幅提升的。Hologres它其实也支持Primary Key,所以我们也是配置了Primary Key,我们在这个场景下面是用了insert or ignore这个方法,然后因为配置了Primary Key,它就天然具有去重的功能,这样的话我们上游只要保证at least once,下游的数据就不会有重复。 然后因为我们是放在阿里云上面,所以说是没有任何的运维的成本。

 

原文链接
本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/514921.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AI 3D 传感器市场竞争白热化,中国掌握自主可控核心技术时不我待!

受访者 | 孔博记者 | 夕颜图源 | 视觉中国出品 | AI科技大本营(ID:rgznai100)提到AI 3D传感技术,也许很少有人脑中有概念。但是以下图iPhone手机最早推出的3D虚拟表情生成为例,大概就会知道这项技术可以用来做什么了。 2017年苹果…

数据中台交付专家告诉你,数据架构的分层怎样更加合理?

作者:柯根 从整体上看,数据中台体系架构可分为:数据采集层、数据计算层、数据服务层三大层次。通过这三大层次对上层数据应用提供数据支撑。 数据采集层 对于企业来说,每时每刻都在产生海量的数据,数据采集作为数据…

手机版腐蚀rust_手机进水后黑屏,该怎么办?切忌做这几件事

手机进水后黑屏,不可急于开机,应先取下SIM卡,然后拆机对手机内部的主板及各个接口进行清理。如果处理后仍然黑屏,通常可以通过修复受损电路及更换屏幕来解决这个问题。手机进水引起黑屏的原因手机内部进水,通常由听筒、…

XXL-Job集群部署和⾼可⽤最佳实战

文章目录一、调度中心集群部署1. HA/集群2. 调度中⼼集群3. 执⾏器集群4. 集群需要满足的条件5. 集群部署最佳实战二、任务执行器的集群配置2.1. 集群地址配置2.2. 执行器名称配置2.3. 执行器端口三、路由策略一、调度中心集群部署 1. HA/集群 为了避免单点故障,任…

看动画学算法之:linkedList

简介 linkedList应该是一种非常非常简单的数据结构了。节点一个一个的连接起来,就成了linkedList。今天我们使用动画的方法一起来看看linkedList是怎么插入和删除的。 linkedList的构建 linkedList是由一个一个的节点构成的。而每个节点只需要存储要保存的数据和…

CSDN鸿蒙社区福利:HarmonyOS Beta 版内测资格申请

HarmonyOS Beta 版测试申请入口已于5月17日全面关闭,屏幕前正在敲代码的你是不是错失了这次机会? 作为 HarmonyOS 的合作伙伴,“CSDN鸿蒙社区”为广大 CSDN 乡亲们申请到部分内测资格,只要拥有内测资格设备即可免费申请&#xff0…

linux环境~Kafka集群 监控 Kafka Eagle 图形化版本

文章目录一、安装、配置、验证1. 安装包下载2. 开启kafka JMX3. 安装JDK,配置JAVA_HOME4. 上传安装包、解压5. 配置Kafka-eagle环境变量6. 配置Kafka_eagle7. 配置ke.sh8. 启动Kafka_eagle9. 防火墙10. 访问Kafka eagle二、监控面本总览2.1. Dashboard2.2. MESSAGE2…

前端搞报表|数据分析提效全链路解决方案

简介: 前端早早聊直播干货 作者:闲鱼技术-云听 背景介绍 闲鱼 2014 年成立,到现在的话已经实现了从 0 ~ 千万级 DAU 的跃迁,随着业务的快速发展,业务决策方法紧跟升级。从最原始的经验驱动到更加科学合理的数据驱动…

kafka消息过期时间设置(全局和特定topic)

文章目录一、kafka 全局消息过期时间设置1. 配置文件夹2. 修改配置3. 重启配置生效二、针对特定topic设置过期时间2.1. 配置文件夹2.2. 执行设置命令三、kafka过期消息删除过程一、kafka 全局消息过期时间设置 1. 配置文件夹 进入kafka配置文件夹 /app/kafka_2.12-2.2.0/con…

DeVOpS 实战:Kubernetes 微服务监控体系

来源 | 无敌码农责编 | 寇雪芹头图 | 下载于视觉中国监控系统是运维体系乃至整个软件产品生命周期中最重要的一环,完善的监控可以帮助我们事前及时发现故障,事后快速追查定位问题。而在以微服务为代表的云原生架构体系中,系统分为多个层次&am…

面对复杂业务,if-else coder 如何升级?

作者 | 张建飞 阿里巴巴高级技术专家 导读:针对业务在不同场景下的差异,我们常常会习惯性地使用 if-else 来实现不同的业务逻辑,久而久之代码越来越难以维护。那么如何消除这些 if-else?面对复杂业务应如何思考和分析&#xff1f…

adobe怎么统计字数_SEO技能:怎么写站内文章对网站排名更好?

每个做seo的人都知道真相,而且不会累积千里。意思是要注意网站上每篇文章的写作,因为网站的流量和权重一般需要所有网页的共同支持。因此,如何撰写有利于网站优化的文章尤为重要。虚拟社群提醒大家,细节通常被认为是成功的。通过写…

网站都变成灰色,一行代码就搞定了!

文章目录一、主流网站主题分析1. 腾讯课堂2. bilibili3. CSDN二、默认样式2.1. 腾讯课堂2.2. bilibili2.3. CSDN三、 案例demo一、主流网站主题分析 实现原理:在html标签上的class添加一个全局过滤器样式即可 1. 腾讯课堂 在html标签添加一个class,给cl…

应用架构之道:分离业务逻辑和技术细节

简介: “让上帝的归上帝,凯撒的归凯撒。” 作者 | 张建飞 阿里巴巴高级技术专家 架构 什么是架构? 关于架构这个概念很难给出一个明确的定义,也没有一个标准的定义。 硬是要给一个概述,我认为架构就是对系统中的实…

Java面试高频题:Spring Boot+JVM+Nacos高并发+高可用已撸完​

2021都说工作不好找,也是对开发人员的要求变高。前段时间自己有整理了一些Java后端开发面试常问的高频考点问题做成一份PDF文档(1000道高频题),同时也整理一些图文解析及笔记,今天在这免费分享给大家,希望大…

IEEE EDGE 2020论文:Astraea — 以优雅的方式在边缘部署AI服务

简介: 近日,阿里云边缘计算团队博士后付哲的论文《Astraea: Deploy AI Services at the Edge in Elegant Ways》入选2020年IEEE边缘计算国际会议(IEEE International Conference on Edge Computing),并在大会上进行了宣…

Mendix:云原生应用是软件的未来

作者 | Mendix投稿 编辑 | 宋 慧 头图 | 付费下载于东方IC 如今,在构建新的应用时,很多公司都会想到 “云端优先”。但随着科技的发展,更好的方法是考虑 “云原生”应用。 云原生应用利用了诞生于云端的平台和流程的优势。它们具有高可扩展…

如何生成 Flink 作业的交互式火焰图?

简介: Flink 是目前最流行的大数据及流式计算框架之一,用户可以使用 Java/Scala/Python 的 DataStream 接口或者标准 SQL 语言来快速实现一个分布式高可用的流式应用,通过内部的 Java JIT、off-heap 内存管理等技术优化性能,并且有…

xxl-job分布式调度参数传递和调度⽇志配置

文章目录1. 参数传递2. 调度⽇志1. 参数传递 UI界⾯参数传递 String jobParam XxlJobHelper.getJobParam();2. 调度⽇志 执⾏⽇志打印 需要通过 “XxlJobHelper.log” 打印执⾏⽇志 执⾏结果 默认任务结果为 “成功” 状态,不需要主动设置 ⾃主设置任务结果&…

蚂蚁王旭:开源协作如何提升业界的安全?

简介: 开发者、组织、业界机构的共同努力,让开源项目和社区,乃至整个世界变得更加安全。 在前不久的上海外滩大会上,蚂蚁资深技术专家、Kata Containers创始人王旭向参会者分享了开源、开放协作与软件安全可信的话题,本…