PaddlePaddle:在 Serverless 架构上十几行代码实现 OCR 能力

简介: 飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,同时支持声明式和命令式编程,兼具开发的灵活性和高性能。

1.jpg

飞桨 (PaddlePaddle) 以百度多年的深度学习技术研究和业务应用为基础,是中国首个自主研发、功能完备、 开源开放的产业级深度学习平台,集深度学习核心训练和推理框架、基础模型库、端到端开发套件和丰富的工具组件于一体。

飞桨深度学习框架采用基于编程逻辑的组网范式,对于普通开发者而言更容易上手,同时支持声明式和命令式编程,兼具开发的灵活性和高性能。另外飞桨不仅广泛兼容第三方开源框架训练的模型部署,并且为不同的场景的生产环境提供了完备的推理引擎,包括适用于高性能服务器及云端推理的原生推理库 Paddle Inference,面向分布式、流水线生产环境下自动上云、A/B 测试等高阶功能的服务化推理框架 Paddle Serving,针对于移动端、物联网场景的轻量化推理引擎 Paddle Lite,以及在浏览器、小程序等环境下使用的前端推理引擎 Paddle.js。同时,透过与不同场景下的主流硬件高度适配优化及异构计算的支持, 飞桨的推理性能也领先绝大部分的主流实现。

安装飞桨

飞桨可以被认为是一个 Python 的依赖库,官方提供了 pip,conda,源码编译等多种安装方法。以 pip 安装方法为例,飞桨提供了 CPU 和 GPU 两个版本安装方法:

  • CPU 版本安装方法:

pip install paddlepaddle

  • GPU 版本安装方法:

pip install paddlepaddle-gpu

实践:手写数字识别任务

MNIST 是非常有名的手写体数字识别数据集,在无论是 Tensorflow 的官方网站还是 PaddlePaddle 的新手入门,都是通过它做实战讲解,它由手写体数字的图片和相对应的标签组成,如:

2.jpg

MNIST 数据集分为训练图像和测试图像。训练图像 60000 张,测试图像 10000 张,每一个图片代表 0-9 中的一个数字,且图片大小均为 28*28 的矩阵。这一小节将会以 PaddlePaddle 官方提供的 MNIST 手写数字识别任务为例,进行 PaddlePaddle 框架的基本学习。与其他深度学习任务一样,飞桨同样要通过以下四个步骤完成一个相对完整的深度学习任务:

  1. 数据集的准备和加载;
  2. 模型构建;
  3. 模型训练;
  4. 模型评估。

加载内置数据集

飞桨框架内置了一些常见的数据集,在这个示例中,开发者可以加载飞桨框架的内置数据集,例如本案例所涉及到的手写数字体数据集。这里加载两个数据集,一个用来训练模型,一个用来评估模型。

import paddle.vision.transforms as Ttransform = T.Normalize(mean=[127.5], std=[127.5], data_format='CHW')

#下载数据集

train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=transform)val_dataset =  paddle.vision.datasets.MNIST(mode='test', transform=transform)

模型搭建

通过 Sequential 将一层一层的网络结构组建起来。注意,需要先对数据进行 Flatten 操作,将 [1, 28, 28] 形状的图片数据改变形状为 [1, 784]。

mnist = paddle.nn.Sequential(

paddle.nn.Flatten(),    

paddle.nn.Linear(784, 512),    

paddle.nn.ReLU(),    

paddle.nn.Dropout(0.2),    

paddle.nn.Linear(512, 10))

模型训练

在训练模型前,需要配置训练模型时损失的计算方法与优化方法,开发者可以使用飞桨框架提供的 prepare 完成,之后使用 fit 接口来开始训练模型。

# 预计模型结构生成模型对象,便于进行后续的配置、训练和验证

model = paddle.Model(mnist)

# 模型训练相关配置,准备损失计算方法,优化器和精度计算方法model.prepare(paddle.optimizer.Adam(parameters=model.parameters()),                paddle.nn.CrossEntropyLoss(),                

paddle.metric.Accuracy())

# 开始模型训练

model.fit(train_dataset,            

epochs=5,            

batch_size=64,            

verbose=1)

训练结果:

The loss value printed in the log is the current step, and the metric is the average value of previous steps.Epoch 1/5step 938/938 [==============================] - loss: 0.1801 - acc: 0.9032 - 8ms/stepEpoch 2/5step 938/938 [==============================] - loss: 0.0544 - acc: 0.9502 - 8ms/stepEpoch 3/5step 938/938 [==============================] - loss: 0.0069 - acc: 0.9595 - 7ms/stepEpoch 4/5step 938/938 [==============================] - loss: 0.0094 - acc: 0.9638 - 7ms/stepEpoch 5/5step 938/938 [==============================] - loss: 0.1414 - acc: 0.9670 - 8ms/step

模型评估

开发者可以使用预先定义的验证数据集来评估前一步训练得到的模型的精度。

model.evaluate(val_dataset, verbose=0)

结果如下:

{'loss': [2.145765e-06], 'acc': 0.9751}

可以看出,初步训练得到的模型效果在 97.5% 附近,在逐渐了解飞桨后,开发者可以通过调整其中的训练参数来提升模型的精度。

与 Serverless 架构结合

PaddlePaddle 团队首次开源文字识别模型套件 PaddleOCR,目标是打造丰富、领先、实用的文本识别模型/工具库。该模型套件是一个实用的超轻量 OCR 系统。主要由DB文本检测、检测框矫正和 CRNN 文本识别三部分组成。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化 8 个方面,采用 19 个有效策略,对各个模块的模型进行效果调优和瘦身,最终得到整体大小为 3.5M 的超轻量中英文 OCR 和 2.8M 的英文数字 OCR。

本地开发

# index.py

import base64

import bottle

import random

from paddleocr import PaddleOCR

ocr = PaddleOCR(use_gpu=False)

@bottle.route('/ocr', method='POST')

def login():    

filePath = './temp/' + (''.join(random.sample('zyxwvutsrqponmlkjihgfedcba', 5)))    

with open(filePath, 'wb') as f:      

f.write(base64.b64decode(bottle.request.body.read().decode("utf-8").split(',')[1]))  

ocrResult = ocr.ocr(filePath, cls=False)    

return {'result': [[line[1][0], float(line[1][1])] for line in ocrResult]}

bottle.run(host='0.0.0.0', port=8080)

开发完成之后,运行该项目:

python index.py

可以看到服务已经启动:

3.jpg

然后通过 Postman 工具进行测试,首先准备一张图片(此处以 PaddleOCR 项目内置的测试图片为例):

4.jpg

通过将图片转换为 Base64 编码,并以 POST 方法请求刚刚启动的 Web 服务,可以看到 PaddleOCR 的执行结果:

5.jpg

部署到 Serverless 架构

目前各大云厂商的 FaaS 平台均已经逐渐支持容器镜像部署。所以,可以将项目打包成镜像,并通过 Serverless Devs 部署到阿里云函数计算。

部署前准备

首先需要完成 Dockerfile 文件:

FROM python:3.7-slim

RUN apt update && apt install gcc libglib2.0-dev libgl1-mesa-glx libsm6 libxrender1 -y && pip install paddlepaddle bottle scikit-build paddleocrle scikit-build paddleocr

# Create app directory

WORKDIR /usr/src/app

# Bundle app source

COPY . .

编写符合 Serverless Devs 规范的 Yaml 文档:

# s.yaml

edition: 1.0.0
name: paddle-ocr
access: default
services:
paddle-ocr:
component: fc
props:
region: cn-shanghai
service:
name: paddle-ocr
description: paddle-ocr service
function:
name: paddle-ocr-function
runtime: custom-container
caPort: 8080
codeUri: ./
timeout: 60
customContainerConfig:
image: 'registry.cn-shanghai.aliyuncs.com/custom-container/paddle-ocr:0.0.1'
command: '["python"]'
args: '["index.py"]'
triggers:
- name: httpTrigger
type: http
config:
authType: anonymous
methods:
- GET
- POST
customDomains:
- domainName: auto
protocol: HTTP
routeConfigs:
- path: /*

项目部署

首先构建镜像,此处可以通过 Serverless Devs 进行构建:

s build --use-docker

6.jpg

构建完成之后,可以通过工具直接进行部署:

s deploy --push-registry acr-internet --use-local -y

部署完成,可以看到系统返回的测试地址:

7.jpg

项目测试

此时,可以通过该测试地址进行测试,同样得到了预期效果:

8.jpg

项目优化

通过对部署在 Serverless 架构上的项目进行请求,可以看到冷启动和热启动的时间消耗:

9.jpg

通过冷启动与热启动的对比,我们可以发现,在热启动时,整个系统的性能是相对优秀的。但是遇到冷启动整个项目的响应时常是不可控的,此时可以考虑一下途径进行优化:

  1. 缩减容器镜像的体积,减少不必要的依赖、文件等,清理掉安装依赖时留下的缓存等;因为函数计算的冷启动包括镜像拉取时间;
  2. 部分流程进行优化,例如在 PaddleOCR 项目中有明确说明:“paddleocr 会自动下载 ppocr 轻量级模型作为默认模型”,所以这就意味着该项目在 Serverless 架构的冷启动过程中,相对比热启动还增加了一个模型下载和解压的流程,所以这一部分在必要时是可以打入到容器镜像中,进而减少冷启动带来的影响;
  3. 开启镜像加速,可以有效降低容器镜像的冷启动,在阿里云函数计算官方文档中有相关镜像加速的性能测试描述:“开启函数计算的镜像加速后,可提速 2~5 倍,将分钟级的镜像拉取缩短至秒级”;
  4. 实例预留,最大程度上降低冷启动率。通过实例预留,可以通过多种算法/策略进行实例的预热和预启动,可以最大程度上降低 Serverless 架构冷启动带来的影响;

原文链接
本文为阿里云原创内容,未经允许不得转载。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/512243.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

云原生体系下 Serverless 弹性探索与实践

简介: SAE 通过对弹性组件和应用全生命周期的不断优化以达到秒级弹性,并在弹性能力,场景丰富度,稳定性上具备核心竞争力,是传统应用 0 改造上 Serverless 的最佳选择。 作者:竞霄 Serverless 时代的来临 …

java jndi使用_Java项目中使用JNDI连接数据库

因为写的大作业经常用到数据库连接 所以自己写了个数据库连接的类 package DB_Link_info;/* * 数据库链接信息 */public class DB_link_Info {public static final String driverName "com.microsoft.sqlserver.jdbc.SQLServerDriver";public static开发环境为Java,…

Joint Consensus两阶段成员变更的单步实现

简介: Raft提出的两阶段成员变更Joint Consensus是业界主流的成员变更方法,极大的推动了成员变更的工程应用。但Joint Consensus成员变更采用两阶段,一次变更需要提议两条日志, 在一些系统中直接使用时有些不便。那么Joint Consen…

真香!8 行代码搞定最大子数组和问题

作者 | 码农的荒岛求生来源 | 码农的荒岛求生今天给大家带来一道极其经典的题目,叫做最大和子数组,给定一个数组,找到其中的一个连续子数组,其和最大。示例:输入: nums [-2,1,-3,4,-1,2,1,-5,4] 输出: 6 解释: 子数组…

深度干货|云原生分布式数据库 PolarDB-X 的技术演进

简介: 深入解读PolarDB-X的产品架构,以及分布式事务、透明分布式、水平扩展等技术内幕。 一、PolarDB-X是什么 PolarDB-X最早起源于阿里集团2009年提出用分布式架构替代传统商业数据库,阿里研发了TDDL分库分表中间件。2014年阿里集团开始全…

OpenStack 如何跨版本升级

作者 | 孙琦来源 | 万博智云OpenStack是中国私有云的事实标准根据三方统计报告,2020年,中国私有云市场规模达到951.8亿元,同比增长42.1%,私有云在国内IaaS市场占比约45%。私有云提供商有望在云计算市场持续高速发展进程中持续受益…

流计算引擎数据一致性的本质

简介: 本篇文章从流计算的本质出发,重点分析流计算领域中数据处理的一致性问题,同时对一致性问题进行简单的形式化定义,提供一个一窥当下流计算引擎发展脉络的视角,让大家对流计算引擎的认识更为深入,为可能…

java 的io流需要学吗_Java的IO流之字节流,必须要学得内容,你会嘛?

原标题:Java的IO流之字节流,必须要学得内容,你会嘛?伙伴们~端午节过的如何呀~有没有很开心呀~假期已过咱们继续开动了IO流先来认识一下IO流:IO流用来处理设备之间的数据传输,Java对数据的操作是通过流的方式…

为什么大家都在抵制用定时任务实现「关闭超时订单」功能?

作者 | 阿Q来源 | 阿Q说代码前几天领导突然宣布几年前停用的电商项目又重新启动了,让我把代码重构下进行升级。让我最深恶痛觉的就是里边竟然用定时任务实现了“关闭超时订单”的功能,现在想来,哭笑不得。我们先分析一波为什么大家都在抵制用…

面对疾风吧,如何搭建高协同的精准告警体系?

简介: 想要实现AiOps,智能告警少不了。Arms 告警运维中心让面向告警的组织协同更加便捷高效! 作者|九辩 世上没有一个系统是百分之百尽善尽美的。如果想要保证可用性,那么技术团队就得对服务的各种状态了如指掌&…

KubeMeet|聊聊新锐开源项目与云原生新的价值聚焦点

简介: 10 月 16 日上海,OAM/KubeVela、OpenKruise、OCM 三大开源项目的社区负责人、核心贡献者和企业用户将齐聚 KubeMeet,和现场 100 名开发者聊聊新的技术环境和企业需求下,有关“云原生应用管理”的那些事儿。 随着云原生关注…

Redis 究竟适不适合当队列来用?

‍作者 | Magic Kaito来源 | 水滴与银弹我经常听到很多人讨论,关于「把 Redis 当作队列来用是否合适」的问题。有些人表示赞成,他们认为 Redis 很轻量,用作队列很方便。也些人则反对,认为 Redis 会「丢」数据,最好还是…

EDA 事件驱动架构与 EventBridge 二三事

简介: 事件驱动型架构 (EDA) 方兴未艾,作为一种 Serverless 化的应用概念对云原生架构具有着深远影响。当我们讨论到一个具体架构时,首当其冲的是它的发展是否具有技术先进性。这里从我们熟悉的 MVC 架构,SOA 架构谈起&#xff0c…

如果被问到分布式锁,应该怎样回答?

作者 | tech-bus.七十一来源 | 程序员巴士说到锁,在平时的工作中,主要是使用synchronized关键字,或者相关的一些类库来实现同步,但这都是基于单机应用而言的,当我们的应用多实例部署时,这时候就需要用到分布…

工业视觉智能实战经验之IVI算法框架2.0

简介: 工业视觉智能团队在交付了多个工业视觉智能质检项目后,发现了工业视觉智能的共性问题和解法,打造了工业视觉智能平台,通过平台的方式积累和提升工业视觉的通用能力。在平台建设上最核心的能力是算法能力。算法能力包括不断增…

技术干货 | jsAPI 方式下的导航栏的动态化修改

简介: 操作指导:通过 jsAPI 实现导航栏的动态修改。 很多开发同学在接入 H5 容器后都会对容器的导航栏进行深度定制,除了 Native 的定制化之外,还有很多场景是使用到 jsAPI 的方式,通过 jsAPI 实现导航栏的动态修改。 …

Gartner:企业机构需重新定义网络安全领导者角色

编辑 | 宋慧 供稿 | Gartner 根据Gartner的最新调查,由于网络风险责任已被转移到IT以外,并且日益分散的生态系统导致网络安全领导者正在失去对决策的直接控制权,企业机构需要重新定义网络安全领导者的角色。 如今,安全和风险管理…

成本直降50%,下一代网关震撼发布

简介: 在容器和K8s主导的云原生时代,网关的新形态变得逐渐清晰,阿里内部也孵化出了下一代的网关产品 - 云原生网关,已在支付宝、淘宝、优酷、口碑等业务成功上线,并且经历了2020双11大促海量请求的考验,目前…

备战“双11”,阿里云为企业提供一站式资源保障服务

简介: 阿里云弹性计算将上线资源保障服务,通过智能化资源诊断、推荐、资源预定及授权候补为用户提供一站式自助化资源保障服务,兼顾灵活,经济的同时还能获得时刻的确定性保障,为业务顺畅前行保驾护航。 报名体验资源保…

快速上手 Serverless | 入门第一课

简介: 本文从云计算抛砖引玉,详解 Serverless 的典型应用场景和一些产品介绍。 一、 从云计算到 Serverless 自世界上第一台通用计算机 ENIAC (图左)诞生以来,计算机科学与技术的发展就从未停止过前进的脚步。2003年-2006年,谷歌…