GAN(生成对抗网络)

简介:GAN生成对抗网络本质上是一种思想,其依靠神经网络能够拟合任意函数的能力,设计了一种架构来实现数据的生成。

原理:GAN的原理就是最小化生成器Generator的损失,但是在最小化损失的过程中加入了一个约束,这个约束就是使Generator生成的数据满足我们指定数据的分布,GAN的巧妙之处在于使用一个神经网络(鉴别器Discriminator)来自动判断生成的数据是否符合我们所需要的分布。

实现细节:

一:

        准备好我们想要让生成器生成的数据类型,比如MINIST手写数字集,包含1-10十个数字,一共60000张图片。生成器的目的就是学习这个数据集的分布。

二,

        定义一个生成器,用于判别一张图片是实际的还是生成器生成的,当生成器完美学习得到数据分布之后,鉴别器可能就分不清图片是生成器的还是实际的,这样的话生成器就能生成我们想要的图片了。

        生成器的训练过程为:实际数据输出结果1,生成数据输出结果为0,目的是学会区分真假数据,相当于提供一个约束,使生成数据符合指定分布。当鉴别生成器的数据分布时,只需要更新鉴别器的参数权重,不能够通过计算图将生成器的参数进行更新。

三,

        定义一个生成器,给定一个输入,他就能生成1-10里面的一个数字的图片。生成器的反向更新是根据鉴别器的损失来确定(被约束进行反向更新)。生成器的网络权重参数是单独的,反向更新时,只需要更新计算图当中属于生成器部分的参数。

下面给出生成1-0-1-0数据格式的代码:

# %%
import torch
import numpy
import torch.nn as nn
import matplotlib.pyplot as plt# %%
def gennerate1010():return torch.FloatTensor([numpy.random.uniform(0.9,1.1),numpy.random.uniform(0.,.1),numpy.random.uniform(0.9,1.1),numpy.random.uniform(0.0,.1)])# %%
def genneratexxxx():return torch.rand(4)# %%
class Discrimer(nn.Module):def __init__(self) -> None:father_obj = super(Discrimer,self)father_obj.__init__()self.create_model()self.counter = 0self.progress = []def create_model(self):self.model = nn.Sequential(nn.Linear(4,3),nn.Sigmoid(),nn.Linear(3,1),nn.Sigmoid(),           )self.loss_functon = nn.MSELoss()self.optimiser = torch.optim.SGD(self.parameters(),lr=0.01)def forward(self,x):return self.model(x)def train(self,x,targets):outputs = self.forward(x)loss = self.loss_functon(outputs,targets)self.counter += 1if self.counter%10 == 0:self.progress.append(loss.item())if self.counter%10000 == 0:print(self.counter)self.optimiser.zero_grad()loss.backward()self.optimiser.step()def plotprogress(self):plt.plot(self.progress,marker='*')plt.show()# %%
class Gennerater(nn.Module):def __init__(self) -> None:father_obj = super(Gennerater,self)father_obj.__init__()self.create_model()self.counter = 0self.progress = []def create_model(self):self.model = nn.Sequential(nn.Linear(1,3),nn.Sigmoid(),nn.Linear(3,4),nn.Sigmoid(),           )# 这个优化器只能优化生成器部分的参数self.optimiser = torch.optim.SGD(self.parameters(),lr=0.01)def forward(self,x):return self.model(x)def train(self,D,x,targets):g_outputs = self.forward(x)d_outputs = D.forward(g_outputs)# 使用鉴别器的loss函数,但是只更新生成器的参数,生成器的参数需要根据鉴别器的约束进行更新loss = D.loss_functon(d_outputs,targets)self.counter += 1if self.counter%10 == 0:self.progress.append(loss.item())if self.counter%10000 == 0:print(self.counter)self.optimiser.zero_grad()loss.backward()self.optimiser.step()def plotprogress(self):plt.plot(self.progress,marker='*')plt.show()# %%
D = Discrimer()# %%
G = Gennerater()# %%
for id in range(15000):# 喂入实际数据给鉴别器D.train(gennerate1010(),torch.FloatTensor([1.]))# 喂入生成的数据,使用detach从计算图脱离,用于更新鉴别器,而生成器得不到更新D.train(G.forward(torch.FloatTensor([0.5]).detach()),torch.FloatTensor([0.0]))G.train(D,torch.FloatTensor([0.5]),torch.FloatTensor([1.]))# %%
D.plotprogress()# %%
G.plotprogress()# %%
G.forward(torch.FloatTensor([0.5]))

参考:PyTorch生成对抗网络编程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50890.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

渗透测试漏洞原理之---【SQL注入】

文章目录 1、SQL注入原理1.1、SQL注入原理1.2、SQL注入危害1.3、SQL注入分类1.4、SQL注入漏洞挖掘1.4.1、注入点判断1.4.2、主要关注的问题1.4.3、sql-lib靶场第一关注入点 1.5、知识补充 2、SQL注入基本手法2.1、联合查询判断注入类型判断列数判断显示位数据库中的敏感信息获取…

Go语言基础之map

Go语言中提供的映射关系容器为map,其内部使用散列表(hash)实现。 map map是一种无序的基于key-value的数据结构,Go语言中的map是引用类型,必须初始化才能使用。 map定义 Go语言中 map的定义语法如下: …

Unity shader 入门之渲染管线一、总览

如下示意图 应用阶段(ApplicationStage):准备场景信息(视景体,摄像机参数)、粗粒度剔除、定义每个模型的渲染命令(材质,shader)——由开发者定义,不做讨论。几何阶段(GemetryStage)&…

SENet(Squeeze-and-Excitation Network)注意力机制

SENet(Squeeze-and-Excitation Network)是一种用于深度卷积神经网络(CNN)的注意力机制,旨在增强网络在特征通道上的表示能力。它通过学习每个通道的重要性权重,然后使用这些权重来重新加权特征图&#xff0…

Resnet模型详解

1、Resnet是什么? Resnet是一种深度神经网络架构,被广泛用于计算机视觉任务,特别是图像分类。它是由微软研究院的研究员于2015年提出的,是深度学习领域的重要里程碑之一。 2、网络退化问题 理论上来讲,随着网络的层…

API接口常用数据格式Json,Json的定义和XML的区别

现在程序员还有谁不知道 JSON 吗?无论对于前端还是后端,JSON 都是一种常见的数据格式。那么 JSON 到底是什么呢? JSON 的定义 JSON (JavaScript Object Notation) ,是一种轻量级的数据交换格式。它的使用…

基于springboot的社区生活缴费系统/基于javaweb的水电缴费系统

摘 要 网络的广泛应用给生活带来了十分的便利。所以把社区生活缴费管理与现在网络相结合,利用java语言建设社区生活缴费系统,实现社区生活缴费管理的信息化。则对于进一步提高社区生活缴费管理发展,丰富社区生活缴费管理经验能起到不少的促进…

使用Python搭建服务器公网展示本地电脑文件

文章目录 1.前言2.本地http服务器搭建2.1.Python的安装和设置2.2.Python服务器设置和测试 3.cpolar的安装和注册3.1 Cpolar云端设置3.2 Cpolar本地设置 4.公网访问测试5.结语 1.前言 Python作为热度比较高的编程语言,其语法简单且语句清晰,而且python有…

UE4/5Niagara粒子特效之Niagara_Particles官方案例:1.5->2.3

目录 之前的文章: 1.5 Blend Attributes by Value 发射器更新 粒子生成 粒子更新 2.1 Static Beams ​编辑 发射器更新: 粒子生成 粒子更新 2.2 Dynamic Beams 没有开始模拟前的效果是: 开始模拟后的效果是: 发射器更新 …

python模拟登入某平台+破解验证码

概述 python模拟登录平台,遇见验证码识别!用最简单的方法seleniumda破解验证码,来自动登录平台 详细 python用seleniumxpath模拟登录破解验证码 先随便找个小说平台用户登陆 - 书海小说网用户登陆 - 书海小说网用户登陆 - 书海小说网 准…

python环境建设

1. 查看通过pip安装包的路径 问题:devchat vscode中配置需要查找devchat的安装路径,使用pip相关的命令查看 pip list | grep package_name 命令显示获取已安装包的信息(包名与版本号)pip show package_name命令能显示该安装的包…

php输入post过滤函数,入库出库,显示

第一部分 php输入post过滤函数 function GLOBAL_POST($str) {$str_origin$str; if (empty($str)) return false;$str str_replace( /, "", $str);//替换关键词 $str str_replace("\\", "", $str); $str str_replace("&gt", &…

【网络安全】跨站脚本(xss)攻击

跨站点脚本(也称为 XSS)是一种 Web 安全漏洞,允许攻击者破坏用户与易受攻击的应用程序的交互。它允许攻击者绕过同源策略,该策略旨在将不同的网站彼此隔离。跨站点脚本漏洞通常允许攻击者伪装成受害者用户,执行用户能够…

七夕学算法

目录 P1031 [NOIP2002 提高组] 均分纸牌 原题链接 : 题面 : 思路 : 代码 : P1036 [NOIP2002 普及组] 选数 原题链接 : 题面 : 思路 : 代码 : P1060 [NOIP2006 普及组] 开心的金明 原题链接 : 题面 : 思路 : 01背包例题 : 代码 : P1100 高低位交换 原题…

部署常用指南

https://docs.conda.io/en/latest/miniconda.html#installing 环境配置 安装和配置 Anaconda 安装 Anaconda。 配置镜像源: yaml conda配置 vim ~/.condarc channels: - https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/pro/ - https://mirrors.tuna.ts…

Istio入门体验系列——基于Istio的灰度发布实践

导言:灰度发布是指在项目迭代的过程中用平滑过渡的方式进行发布。灰度发布可以保证整体系统的稳定性,在初始发布的时候就可以发现、调整问题,以保证其影响度。作为Istio体验系列的第一站,本文基于Istio的流量治理机制,…

Java面试题:顺序锁和轮询锁解决死锁问题

目录 死锁(Dead Lock)示例解决方案1:顺序锁解决方案2:轮询锁 死锁(Dead Lock)示例 两个线程 线程1:先获取锁A,再获取锁B线程2:先获取锁B,再获取锁A packag…

Enabling Large Language Models to Generate Text with Citations

本文是LLM系列的文章,针对《Enabling Large Language Models to Generate Text with Citations》的翻译。 使大语言模型能够生成带有引用的文本 摘要1 引言2 任务设置和数据集3 自动评估4 建模5 实验6 人类评估7 相关工作8 结论不足 摘要 大型语言模型&#xff08…

如何批量加密PDF文件并设置不同密码 - 批量PDF加密工具使用教程

如果你正在寻找一种方法来批量加密和保护你的PDF文件,批量PDF加密工具是一个不错的选择。 它是一个体积小巧但功能强大的Windows工具软件,能够批量给多个PDF文件加密和限制,包括设置打印限制、禁止文字复制,并增加独立的打开密码。…

从零开始的Hadoop学习(一) | 大数据概念、特点、应用场景、发展前景

1. 大数据概念 大数据(Big Data):指 无法在一定时间范围 内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的 海量、高增长率和多样化 的 信息资产。 大数据主要解决,海量…