二维码编码规范解读

1 QR码符号的结构

QR 码符号的结构如下:
在这里插入图片描述

1.1 定位图案

  • Position Detection Pattern是定位图案,用于标记二维码的矩形大小。这三个定位图案有白边叫Separators for Postion Detection Patterns。之所以三个而不是四个意思就是三个就可以标识一个矩形了。
  • Timing Patterns也是用于定位的。原因是二维码有40种尺寸,尺寸过大了后需要有根标准线,不然扫描的时候可能会扫歪了。
  • Alignment Patterns 只有Version 2以上(包括Version2)的二维码需要这个东东,同样是为了定位用的。

1.2 功能性数据

  • Format Information 存在于所有的尺寸中,用于存放一些格式化数据的。
  • Version Information 在 >=Version 7以上,需要预留两块3 x 6的区域存放一些版本信息。

1.3 数据码和纠错码

  • 除了上述的那些地方,剩下的地方存放 Data Code 数据码 和 Error Correction Code 纠错码。

2 定位符

问题:为什么定位符是如下形式?
在这里插入图片描述
寻象图形包括三个相同的位置探测图形,分别位于符号的左上角、右上角和左下角,如图 2 所示。每个位置探测图形可以看作是由 3 个重叠的同心的正方形组成,它们分别为 7×77 \times 77×7 个深色模块、5×55 \times 55×5 个浅模块和 3×33 \times 33×3 个深色模块。如图 9 所示,位置探测图形的模块宽度比为 1:1:3:1:1。符号中其他地方遇到类似图形的可能性极小,因此可以在视场中迅速地识别可能的 QR 码符号。识别组成寻象图形的三个位置探测图形,可以明确地确定视场中符号的位置和方向。
定位符有三种:

  • Position Detection Pattern(位置探测图形)是定位图案,用于标记二维码的矩形大小。这三个定位图案有白边叫Separators for Position Detection Patterns。之所以三个而不是四个意思就是三个就可以标识一个矩形了。
  • Timing Patterns(定位图形)也是用于定位的。原因是二维码有40种尺寸,尺寸过大了后需要有根标准线,不然扫描的时候可能会扫歪了。
  • Alignment Patterns(矫正图形) 只有Version 2以上(包括Version2)的二维码需要这个东东,同样是为了定位用的。

3 QR版本

问题:QR 码规格是固定的吗?
QR 码符号共有 40 种规格,分别为版本 1、版本 2……版本 40。版本 1 的规格为 21 模块×21 模块,版本 2 为 25 模块×25 模块,以此类推,每一版本符号比前一版本每边增加 4 个模块,直到版本 40,规格为 177 模块×177 模块。图 3至 8 为版本 1,2,6,7,14,21 和 40 的符号结构。
在这里插入图片描述

4 QR码重要信息部分

问题:QR 码哪些部分是重要的,哪些部分不重要,可以损失?

5 数据编码

Table 2 是各个编码格式的“编号”,这个东西要写在Format Information中。注:中文是1101

Table 3 表示不同版本(尺寸)的二维码,对于数字、字符、字节和Kanji模式下,对于单个编码的2进制的位数。(在二维码的规格说明书中,有各种各样的编码规范表,后面还会提到)

5.1 Numeric mode 数字编码

从0到9。如果需要编码的数字的个数不是3的倍数,那么,最后剩下的1或2位数会被转成4或7bits,则其它的每3位数字会被编成 10、12、14bits,编成多长还要看二维码的尺寸(表3说明了这点)
例子
在Version 1的尺寸下,纠错级别为H的情况下,编码: 01234567

  1. 把上述数字分成三组: 012 345 67
  2. 把他们转成二进制: 012 转成0000001100345 转成 010101100167 转成 1000011
  3. 把这三个二进制串起来: 0000001100 0101011001 1000011
  4. 把数字的个数转成二进制 (version 1-H是10 bits ): 8个数字的二进制是 0000001000
  5. 把数字编码的标志0001和第4步的编码加到前面: 0001 0000001000 0000001100 0101011001 1000011

5.2 Alphanumeric mode 字符编码

包括 0-9,大写的A到Z(没有小写),以及符号$ % * + – . / :包括空格。这些字符会映射成一个字符索引表。如表5所示:(其中的SP是空格,Char是字符,Value是其索引值) 编码的过程是把字符两两分组,然后转成下表的45进制,然后转成11bits的二进制,如果最后有一个落单的,那就转成6bits的二进制。而编码模式和字符的个数需要根据不同的Version尺寸编成9, 11或13个二进制(如表3)

例子
在Version 1的尺寸下,纠错级别为H的情况下,编码: AC-42

  1. 从字符索引表中找到 AC-42 这五个字条的索引 (10,12,41,4,2)
  2. 两两分组: (10,12) (41,4) (2)
  3. 把每一组转成11bits的二进制:
    (10,12) 1045+12 等于 462 转成 00111001110
    (41,4) 41
    45+4 等于 1849 转成 11100111001
    (2) 等于 2 转成 000010
  4. 把这些二进制连接起来:00111001110 11100111001 000010
  5. 把字符的个数转成二进制 (Version 1-H为9 bits ): 5个字符,5转成 000000101
  6. 在头上加上编码标识 0010 和第5步的个数编码: 0010 000000101 00111001110 11100111001 000010

5.3 kanji编码

这是日文编码,也是双字节编码。同样,也可以用于中文编码。日文和汉字的编码会减去一个值。如:在0X8140 to 0X9FFC中的字符会减去8140,在0XE040到0XEBBF中的字符要减去0XC140,然后把结果前两个16进制位拿出来乘以0XC0,然后再加上后两个16进制位,最后转成13bit的编码。如下图示例:

5.4 Byte mode字节编码

字节编码,可以是0-255的ISO-8859-1字符。有些二维码的扫描器可以自动检测是否是UTF-8的编码。

5.5 Extended Channel Interpretation (ECI) mode

主要用于特殊的字符集,并不是所有的扫描器都支持这种编码。

5.6 Structured Append mode

用于混合编码,也就是说,这个二维码中包含了多种编码格式。

5.7 FNC1 mode

这种编码方式主要是给一些特殊的工业或行业用的。比如GS1条形码之类的。

5.8 结束符和补齐符

假如我们有个HELLO WORLD的字符串要编码,根据5.2节字符编码的例子,我们可以得到下面的编码:

编码字符数HELLO WORLD的编码
001000000101101100001011 01111000110 10001011100 10110111000 10011010100 001101

5.8.1 结束符

我们还要加上结束符

编码字符数HELLO WORLD的编码结束符
001000000101101100001011 01111000110 10001011100 10110111000 10011010100 0011010000

5.8.2 按8bits重排

如果所有的编码加起来不是8个倍数我们还要在后面加上足够的0,比如上面一共有78个bits,所以,我们还要加上2个0,然后按8个bits分好组:

00100000 01011011 00001011 01111000 11010001 01110010 11011100 01001101 01000011 01000000

5.8.3 补齐码(Padding Bytes)

最后,如果如果还没有达到我们最大的bits数的限制,我们还要加一些补齐码(Padding Bytes),Padding Bytes就是重复下面的两个bytes:11101100 00010001 (这两个二进制转成十进制是236和17,我也不知道为什么,只知道Spec上是这么写的)关于每一个Version的每一种纠错级别的最大Bits限制,可以参看QR Code Spec的第28页到32页的Table-7一表。

假设我们需要编码的是Version 1的Q纠错级,那么其最大需要104个bits,而我们上面只有80个bits,所以,还需要补24个bits,也就是需要3个Padding Bytes,我们就添加三个,于是得到下面的编码:

00100000 01011011 00001011 01111000 11010001 01110010 11011100 01001101 01000011 01000000 11101100 00010001 11101100
上面的编码就是数据码了,叫Data Codewords,每一个8bits叫一个codeword,我们还要对这些数据码加上纠错信息。

6 纠错机制及纠错码

问题:纠错码的位置及纠错原理?
在这里插入图片描述
在这里插入图片描述
上面我们说到了一些纠错级别,Error Correction Code Level,二维码中有四种级别的纠错,这就是为什么二维码有残缺还能扫出来,也就是为什么有人在二维码的中心位置加入图标。

错误修正容量
L水平7%的字码可被修正
M水平15%的字码可被修正
Q水平25%的字码可被修正
H水平30%的字码可被修正

那么,QR是怎么对数据码加上纠错码的?首先,我们需要对数据码进行分组,也就是分成不同的Block,然后对各个Block进行纠错编码,对于如何分组,我们可以查看QR Code Spec的第33页到44页的Table-13到Table-22的定义表。注意最后两列:

  • Number of Error Code Correction Blocks :需要分多少个块。
  • Error Correction Code Per Blocks:每一个块中的code个数,所谓的code的个数,也就是有多少个8bits的字节。

举个例子:上述的Version 5 + Q纠错级:需要4个Blocks(2个Blocks为一组,共两组),头一组的两个Blocks中各15个bits数据 + 各 9个bits的纠错码(注:表中的codewords就是一个8bits的byte)(再注:最后一例中的(c, k, r )的公式为:c = k + 2 * r,因为后脚注解释了:纠错码的容量小于纠错码的一半

下表给一个5-Q的示例(因为二进制写起来会让表格太大,所以,我都用了十进制,我们可以看到每一块的纠错码有18个codewords,也就是18个8bits的二进制数)

数据对每个块的纠错码
1167 85 70 134 87 38 85 194 119 50 6 18 6 103 38213 199 11 45 115 247 241 223 229 248 154 117 154 111 86 161 111 39
2246 246 66 7 118 134 242 7 38 86 22 198 199 146 687 204 96 60 202 182 124 157 200 134 27 129 209 17 163 163 120 133
21182 230 247 119 50 7 118 134 87 38 82 6 134 151 50 7148 116 177 212 76 133 75 242 238 76 195 230 189 10 108 240 192 141
270 247 118 86 194 6 151 50 16 236 17 236 17 236 17 236235 159 5 173 24 147 59 33 106 40 255 172 82 2 131 32 178 236

注:二维码的纠错码主要是通过Reed-Solomon error correction(里德-所罗门纠错算法)来实现的。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

7 最终编码:穿插放置

如果你以为我们可以开始画图,你就错了。二维码的混乱技术还没有玩完,它还要把数据码和纠错码的各个codewords交替放在一起。如何交替呢,规则如下:

对于数据码:把每个块的第一个codewords先拿出来按顺度排列好,然后再取第一块的第二个,如此类推。如:上述示例中的Data Codewords如下:

块167857013487388519411950618610338
块224624666711813424273886221981991466
块31822302471195071181348738826134151507
块4702471188619461515016236172361723617236

我们先取第一列的:67, 246, 182, 70

然后再取第二列的:67, 246, 182, 70, 85,246,230 ,247

如此类推:67, 246, 182, 70, 85,246,230 ,247 ……… ……… ,38,6,50,17,7,236

对于纠错码,也是一样:

块 121319911451152472412232292481541171541118616111139
块 28720496602021821241572001342712920917163163120133
块 314811617721276133752422387619523018910108240192141
块 423515951732414759331064025517282213132178236

和数据码取的一样,得到:213,87,148,235,199,204,116,159,…… …… 39,133,141,236

然后,再把这两组放在一起(纠错码放在数据码之后)得到:

67, 246, 182, 70, 85, 246, 230, 247, 70, 66, 247, 118, 134, 7, 119, 86, 87, 118, 50, 194, 38, 134, 7, 6, 85, 242, 118, 151, 194, 7, 134, 50, 119, 38, 87, 16, 50, 86, 38, 236, 6, 22, 82, 17, 18, 198, 6, 236, 6, 199, 134, 17, 103, 146, 151, 236, 38, 6, 50, 17, 7, 236, 213, 87, 148, 235, 199, 204, 116, 159, 11, 96, 177, 5, 45, 60, 212, 173, 115, 202, 76, 24, 247, 182, 133, 147, 241, 124, 75, 59, 223, 157, 242, 33, 229, 200, 238, 106, 248, 134, 76, 40, 154, 27, 195, 255, 117, 129, 230, 172, 154, 209, 189, 82, 111, 17, 10, 2, 86, 163, 108, 131, 161, 163, 240, 32, 111, 120, 192, 178, 39, 133, 141, 236

这就是我们的数据区。

Remainder Bits

最后再加上Reminder Bits,对于某些Version的QR,上面的还不够长度,还要加上Remainder Bits,比如:上述的5Q版的二维码,还要加上7个bits,Remainder Bits加零就好了。关于哪些Version需要多少个Remainder bit,可以参看QR Code Spec的第15页的Table-1的定义表。

8 画二维码图

8.1 Position Detection Pattern

首先,先把Position Detection图案画在三个角上。(无论Version如何,这个图案的尺寸就是这么大)
在这里插入图片描述

8.2 Alignment Pattern

然后,再把Alignment图案画上(无论Version如何,这个图案的尺寸就是这么大)
在这里插入图片描述
关于Alignment的位置,可以查看QR Code Spec的第81页的Table-E.1的定义表(下表是不完全表格)
在这里插入图片描述
下图是根据上述表格中的Version8的一个例子(6,24,42)
在这里插入图片描述

8.3 Timing Pattern

接下来是Timing Pattern的线(这个不用多说了)
在这里插入图片描述

8.4 Format Information

再接下来是Formation Information,下图中的蓝色部分。
在这里插入图片描述
Format Information是一个15个bits的信息,每一个bit的位置如下图所示:(注意图中的Dark Module,那是永远出现的)
在这里插入图片描述
这15个bits中包括:

  • 5个数据bits:其中,2个bits用于表示使用什么样的Error Correction Level,3个bits表示使用什么样的Mask
  • 10个纠错bits。主要通过BCH Code来计算

然后15个bits还要与101010000010010做XOR操作。这样就保证不会因为我们选用了00的纠错级别和000的Mask,从而造成全部为白色,这会增加我们的扫描器的图像识别的困难。

下面是一个示例:
在这里插入图片描述
关于Error Correction Level如下表所示:
在这里插入图片描述
关于Mask图案如后面的Table 23所示。

8.5 Version Information

再接下来是Version Information(版本7以后需要这个编码),下图中的蓝色部分。
在这里插入图片描述
Version Information一共是18个bits,其中包括6个bits的版本号以及12个bits的纠错码,下面是一个示例:
在这里插入图片描述
而其填充位置如下:
在这里插入图片描述

8.6 数据和数据纠错码

然后是填接我们的最终编码,最终编码的填充方式如下:从左下角开始沿着红线填我们的各个bits,1是黑色,0是白色。如果遇到了上面的非数据区,则绕开或跳过。
在这里插入图片描述

8.7 掩模图形

问题:为什么需要掩模?
在这里插入图片描述
在这里插入图片描述

9 接下来的工作

https://blog.csdn.net/search_129_hr/article/details/120841195

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/507605.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

二维码的纠错码原理及如何纠错(1)

本文将通过例子来说明两个方面的内容: (1)如何构建纠错码? (2)有了纠错码之后如何纠错? 1 如何构建纠错码? 直接上例子,“hello world” 利用二维码的编码原理&#xf…

利用自己构建的网络进行鼾声识别

1 目前的工作 1.1 数据 5692条3s且采集率为8000hz的鼾声与6824条3s且采集率为8000hz的其他类音频。通过FFT频谱转换为300个(30,513,1)的矩阵。训练集与测试集的比例为9:1。数据集来源为google开源的数据集。 1.2 模型 图1. The proposed deep neural network arc…

企业微信加密消息体_用企业微信小程序发送消息

在企业开发中,经常会碰到一些消息要及时推送到企业员工的手中。so 下面来说怎么向企业微信中的员工发消息。本人只是记录下开发过程,详细参考https://work.weixin.qq.com/api/1.准备注册企业微信公司获取企业ID新开企业微信应用获取应用的Agentid&#x…

二维码的纠错码原理及如何纠错(2)

下面进一步介绍二维码纠错相关的编码矩阵 1 范德蒙德(Vandermonde)矩阵 1.1 定义及特性 法国数学家 Alexandre-Thophile Vandermonde 在十八世纪提出了行列式的概念, 用来解决线性方程组问题, 其中一个关键是范德蒙德(Vandermonde) 矩阵, Vandermonde…

NCCIP会议笔记

华南理工大学蔡毅:多智能体通信,识别边界。是否可以用于鼾声识别 天津大学张鹏教授 哈尔滨工业大学 HFUT:俞奎 张长青

计算机创新课,计算机教学课程模式与创新论文

计算机教学课程模式与创新论文摘要:作为大学生通识教育的重要组成部分,计算机基础课程是提高学生信息素养的关键途径。随着互联网技术的不断发展,大学计算机课程教学面临诸多新的挑战,因此需要创新、改革目前的教学模式&#xff0…

New directions in automated traffic analysis论文解读

1 论文主要idea 完整性:没有进行特征提取,保留原始数据包;固定大小:对不同类型的数据包进行统一格式编码,使得编码后的向量大小一致(见图3)将一些与目标任务不一致的字段去掉,如操作…

计算机找不到wf连接,笔记本wifi功能消失了 电脑wifi连接没了 电脑的wifi不见了...

笔记本wifi功能消失了 电脑wifi连接没了 电脑的wifi不见了2019-11-08 11:14:40 来源:网络扫码可以:1.在手机上浏览2.分享给微信好友或朋友圈解决方法:1、鼠标右键单击电脑桌面右下方的文件夹图标。2、进入文件夹后,在左边列表里&…

计算机二级考试都怎么考,计算机二级都考什么 怎么考

满意答案luluthe...2013.08.26采纳率:45% 等级:11已帮助:8894人关于二级考试科目:与去年相同,二级一共七个科目。二级科目分成两类,一类是语 言程序设计(C、C、Java、Visual Basic、Delphi),…

计算机c盘丢失,电脑C盘丢失的视频文件怎么恢复?方法讲解,轻松搞定

电脑C盘丢失的视频文件怎么恢复?在日常的工作以及生活当中,有很多的传统媒体文件充斥着。例如:闲暇时,会找一些直播视频来放松自己。工作中,会找一些网络课程来提升自己。但是,在此过程中也会因为一些失误&…

人脸识别研究任务及开源项目调研

0 任务 人脸识别流程包括人脸检测、人脸对齐、人脸识别等子任务。 图1 一些部分遮挡的人脸样本。(a) LFW数据库中部分遮挡的人脸样本。(b)AR数据库部分遮挡的人脸样本。人脸识别具有重要的学术价值,人脸是一类相当复杂的细节变化的自然结构目标,此类目…

双路服务器单路运行,单路还是双路?看需求选择_机箱电源评测-中关村在线

电源的介绍里面,经常会看到“单路12V输出”或者“双路12V输出”的字样。那么单路12V输出和双路12V输出有什么区别呢?单路12V输出有着什么样的优势,而双路12V又有着什么样的优势呢?接下来简单分析一下。单路输出电源的12V输出主要是…

计算机常用控温算法,常用温度控制方法原理 -解决方案-华强电子网

常用PID调节器/温控仪控制算法包括常规PID、模糊控制、神经网络、Fuzzy-PID、神经网络PID、模糊神经网络、遗传PID及广义预测等算法。常规PID控制易于建立线性温度控制系统被控对象模型;模糊控制基于规则库,并以绝对或增量形式给出控制决策;神…

我的世界服务器修改数据,我的世界常用指令大全,轻松调整服务器数值状态

在我的世界服务器中能够经过输送指令来微调服务器的一些数值状态,此次就为各位提供我的世界常用指令大全,毕竟我的世界作为一款出色的沙盒游戏,不止是因为原版内容和mod的增光填色,也离不开指令的辅助。/say [语句]让服务器发每段…

二维码的目标定位

1 总体思路 第一步,寻找二维码的三个角的定位角点,需要对图片进行平滑滤波,二值化,寻找轮廓,筛选轮廓中有两个子轮廓的特征,从筛选后的轮廓中找到面积最接近的3个即是二维码的定位角点。 第二步&#xff1…

mac 上传ftp服务器文件夹权限,mac 访问 ftp服务器文件夹权限

mac 访问 ftp服务器文件夹权限 内容精选换一换在“云服务器列表”页,单击下拉按钮展开会话列表,查看会话连接状态,出现“关闭应用失败”的异常。将鼠标移动至“关闭应用失败”处,查看具体的失败原因,并根据表1进行故障…

以毒攻毒Fight Fire with Fire: Towards Robust Recommender Systems via Adversarial Poisoning Training论文解读

1 摘要 最近的研究表明,推荐系统是脆弱的,攻击者很容易将精心设计的恶意配置文件注入系统,从而导致有偏见的推荐。我们不能否认这些数据的合理性,因此建立一个强大的推荐系统势在必行。对抗性训练已被广泛研究以获得可靠的建议。…

redis延迟队列 实现_灵感来袭,基于Redis的分布式延迟队列

一、延迟队列延迟队列,也就是一定时间之后将消息体放入队列,然后消费者才能正常消费。比如1分钟之后发送短信,发送邮件,检测数据状态等。二、Redisson Delayed Queue如果你项目中使用了redisson,那么恭喜你&#xff0c…

opencv2 取二进制数据_百亿数据量下,掌握这些Redis技巧你就能Hold全场

程序猿DD一、Redis封装架构讲解实际上NewLife.Redis是一个完整的Redis协议功能的实现,但是Redis的核心功能并没有在这里面,而是在NewLife.Core里面。这里可以打开看一下,NewLife.Core里面有一个NewLife.Caching的命名空间,里面有一…

MV-LDL论文修改20211115(B-Y Rong)

1、摘要 8-10句,每句话15-25个单词 (1)我们的研究领域。。。 (2)已有的工作。。。 (3)有什么缺点。。。(motivation) (4)In this paper … &#…