Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四)

Hadoop学习:深入解析MapReduce的大数据魔力之数据压缩(四)

  • 4.1 概述
    • 1)压缩的好处和坏处
    • 2)压缩原则
  • 4.2 MR 支持的压缩编码
  • 4.3 压缩方式选择
    • 4.3.1 Gzip 压缩
    • 4.3.2 Bzip2 压缩
    • 4.3.3 Lzo 压缩
    • 4.3.4 Snappy 压缩
    • 4.3.5 压缩位置选择
  • 4.4 压缩参数配置
  • 4.5 压缩实操案例
    • 4.5.1 Map输出端采用压缩
    • 4.5.2 Reduce输出端采用压缩
  • 常见错误及解决方案

4.1 概述

1)压缩的好处和坏处

压缩的优点:以减少磁盘IO、减少磁盘存储空间。
压缩的缺点:增加CPU开销。

2)压缩原则

(1)运算密集型的Job,少用压缩
(2)IO密集型的Job,多用压缩

4.2 MR 支持的压缩编码

1)压缩算法对比介绍
在这里插入图片描述

在这里插入图片描述
2)压缩性能的比较
在这里插入图片描述

4.3 压缩方式选择

压缩方式选择时重点考虑:压缩/解压缩速度、压缩率(压缩后存储大小)、压缩后是否
可以支持切片。

4.3.1 Gzip 压缩

优点:压缩率比较高;
缺点:不支持Split;压缩/解压速度一般;

4.3.2 Bzip2 压缩

优点:压缩率高;支持Split;
缺点:压缩/解压速度慢。

4.3.3 Lzo 压缩

优点:压缩/解压速度比较快;支持Split;
缺点:压缩率一般;想支持切片需要额外创建索引。

4.3.4 Snappy 压缩

优点:压缩和解压缩速度快;
缺点:不支持Split;压缩率一般;

4.3.5 压缩位置选择

压缩可以在MapReduce作用的任意阶段启用。
在这里插入图片描述

4.4 压缩参数配置

1)为了支持多种压缩/解压缩算法,Hadoop引入了编码/解码器
在这里插入图片描述
2)要在Hadoop中启用压缩,可以配置如下参数
在这里插入图片描述
在这里插入图片描述

4.5 压缩实操案例

4.5.1 Map输出端采用压缩

即使你的MapReduce的输入输出文件都是未压缩的文件,你仍然可以对Map任务的中
间结果输出做压缩,因为它要写在硬盘并且通过网络传输到Reduce节点,对其压缩可以提
高很多性能,这些工作只要设置两个属性即可,我们来看下代码怎么设置。
1)给大家提供的Hadoop源码支持的压缩格式有:==BZip2Codec、DefaultCodec ==

package com.atguigu.mapreduce.compress; 
import java.io.IOException; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.io.compress.BZip2Codec;  
import org.apache.hadoop.io.compress.CompressionCodec; 
import org.apache.hadoop.io.compress.GzipCodec; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountDriver { public static void main(String[] args) throws IOException, 
ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); // 开启map端输出压缩 conf.setBoolean("mapreduce.map.output.compress", true); // 设置map端输出压缩方式 conf.setClass("mapreduce.map.output.compress.codec", 
BZip2Codec.class,CompressionCodec.class);Job job = Job.getInstance(conf); job.setJarByClass(WordCountDriver.class); job.setMapperClass(WordCountMapper.class); job.setReducerClass(WordCountReducer.class); job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); boolean result = job.waitForCompletion(true); System.exit(result ? 0 : 1); } 
} 

2)Mapper保持不变

package com.atguigu.mapreduce.compress; 
import java.io.IOException; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.LongWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Mapper; public class WordCountMapper extends Mapper<LongWritable, Text, Text, 
IntWritable>{ Text k = new Text(); IntWritable v = new IntWritable(1); @Override protected void map(LongWritable key, Text value, Context 
context)throws IOException, InterruptedException { // 1 获取一行 String line = value.toString(); // 2 切割 String[] words = line.split(" "); // 3 循环写出 for(String word:words){ k.set(word); context.write(k, v); } } 
} 

3)Reducer保持不变

package com.atguigu.mapreduce.compress; 
import java.io.IOException; 
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer<Text, IntWritable, Text, 
IntWritable>{ IntWritable v = new IntWritable(); @Override protected void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; // 1 汇总 for(IntWritable value:values){ sum += value.get(); } v.set(sum); // 2 输出 context.write(key, v); } 
} 

4.5.2 Reduce输出端采用压缩

基于WordCount案例处理。
1)修改驱动

package com.atguigu.mapreduce.compress; 
import java.io.IOException; 
import org.apache.hadoop.conf.Configuration; 
import org.apache.hadoop.fs.Path; 
import org.apache.hadoop.io.IntWritable; 
import org.apache.hadoop.io.Text; 
import org.apache.hadoop.io.compress.BZip2Codec; 
import org.apache.hadoop.io.compress.DefaultCodec; 
import org.apache.hadoop.io.compress.GzipCodec; 
import org.apache.hadoop.io.compress.Lz4Codec; 
import org.apache.hadoop.io.compress.SnappyCodec; 
import org.apache.hadoop.mapreduce.Job; 
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; 
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountDriver { public static void main(String[] args) throws IOException, 
ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf); job.setJarByClass(WordCountDriver.class); job.setMapperClass(WordCountMapper.class);job.setReducerClass(WordCountReducer.class); 
job.setMapOutputKeyClass(Text.class); 
job.setMapOutputValueClass(IntWritable.class); 
job.setOutputKeyClass(Text.class); 
job.setOutputValueClass(IntWritable.class); 
FileInputFormat.setInputPaths(job, new Path(args[0])); 
FileOutputFormat.setOutputPath(job, new Path(args[1])); 
// 设置reduce端输出压缩开启 
FileOutputFormat.setCompressOutput(job, true); 
// 设置压缩的方式 
FileOutputFormat.setOutputCompressorClass(job, BZip2Codec.class);  
//     
FileOutputFormat.setOutputCompressorClass(job, GzipCodec.class);  
//     
FileOutputFormat.setOutputCompressorClass(job, 
DefaultCodec.class);  
boolean result = job.waitForCompletion(true); 
System.exit(result?0:1); 
} 
} 

2)Mapper和Reducer保持不变(详见4.5.1)

常见错误及解决方案

1)导包容易出错。尤其Text和CombineTextInputFormat。

2)Mapper 中第一个输入的参数必须是LongWritable或者NullWritable,不可以是IntWritable. 报的错误是类型转换异常。

3)java.lang.Exception: java.io.IOException: Illegal partition for 13926435656 (4),说明 Partition
和ReduceTask 个数没对上,调整ReduceTask个数。

4)如果分区数不是1,但是reducetask为1,是否执行分区过程。答案是:不执行分区过程。因为在MapTask的源码中,执行分区的前提是先判断ReduceNum个数是否大于1。不大于1 肯定不执行。

5)在Windows环境编译的jar包导入到Linux环境中运行,
hadoop
jar
wc.jar
/user/atguigu/output
报如下错误:
Exception
in
com.atguigu.mapreduce.wordcount.WordCountDriver
thread
“main”
/user/atguigu/
java.lang.UnsupportedClassVersionError:
com/atguigu/mapreduce/wordcount/WordCountDriver : Unsupported major.minor version 52.0
原因是Windows环境用的jdk1.7,Linux环境用的jdk1.8。
解决方案:统一jdk版本。
6)缓存pd.txt小文件案例中,报找不到pd.txt文件
原因:大部分为路径书写错误。还有就是要检查pd.txt.txt的问题。还有个别电脑写相对路径
找不到pd.txt,可以修改为绝对路径。

7)报类型转换异常。
通常都是在驱动函数中设置Map输出和最终输出时编写错误。
Map 输出的key如果没有排序,也会报类型转换异常。

8)集群中运行wc.jar时出现了无法获得输入文件。
原因:WordCount案例的输入文件不能放用HDFS集群的根目录。
9)出现了如下相关异常
Exception
in
thread
“main”
java.lang.UnsatisfiedLinkError:
org.apache.hadoop.io.nativeio.NativeIO W i n d o w s . a c c e s s 0 ( L j a v a / l a n g / S t r i n g ; I ) Z a t o r g . a p a c h e . h a d o o p . i o . n a t i v e i o . N a t i v e I O Windows.access0(Ljava/lang/String;I)Z at org.apache.hadoop.io.nativeio.NativeIO Windows.access0(Ljava/lang/String;I)Zatorg.apache.hadoop.io.nativeio.NativeIOWindows.access0(Native Method)
at org.apache.hadoop.io.nativeio.NativeIO$Windows.access(NativeIO.java:609)
at org.apache.hadoop.fs.FileUtil.canRead(FileUtil.java:977)
java.io.IOException: Could not locate executable null\bin\winutils.exe in the Hadoop binaries.
at org.apache.hadoop.util.Shell.getQualifiedBinPath(Shell.java:356)
at org.apache.hadoop.util.Shell.getWinUtilsPath(Shell.java:371)
at org.apache.hadoop.util.Shell.(Shell.java:364)
解决方案:拷贝hadoop.dll文件到Windows目录C:\Windows\System32。个别同学电脑
还需要修改Hadoop源码。
方案二:创建如下包名,并将NativeIO.java拷贝到该包名下
在这里插入图片描述
10)自定义Outputformat 时,注意在RecordWirter 中的 close 方法必须关闭流资源。否则输出的文件内容中数据为空。

@Override 
public 
void 
close(TaskAttemptContext context) throws IOException, 
InterruptedException { 
if (atguigufos != null) { 
atguigufos.close(); 
} 
if (otherfos != null) { 
otherfos.close(); 
} 
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49752.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学会Mybatis框架:让你的代码更具灵活性、可维护性、安全性和高效性【二.动态SQL】

&#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 接下来看看由辉辉所写的关于Mybatis的相关操作吧 目录 &#x1f973;&#x1f973;Welcome Huihuis Code World ! !&#x1f973;&#x1f973; 一.Mybatis动态SQL如何应用 1.需求 2.…

分布式锁 总结

分布式锁 在应用开发中&#xff0c;特别是web工程开发&#xff0c;通常都是并发编程&#xff0c;不是多进程就是多线程。这种场景下极易出现线程并发性安全问题&#xff0c;此时不得不使用锁来解决问题。在多线程高并发场景下&#xff0c;为了保证资源的线程安全问题&#xff0…

五、修改官方FreeRTOS例程(STM32F1)

1、官方源码下载 (1)进入FreeRTOS官网&#xff1a;FreeRTOS官网 (2)下载FreeRTOS。(选择带示例的下载) 2、删减目录 (1)下载后解压的FreeRTOS文件如下图所示。 (2)删除下图中红框勾选的文件。 FreeRTOS-Plus&#xff0c;FreeRTOS的生态文件&#xff0c;非必需的。tools&…

【数据库】表操作 习题总结

目录 关系建表 数据库sql的执行顺序 内外连接的写法 1.设计一张商品表 2.设计一张老师表 3.设计一张图书表 4.查询练习 5.查询练习 6.设计一个考勤系统 7.设计一个学校宿舍管理系统 8.设计一个车辆违章系统 9.设计一个学校食堂管理系统 10.有一张员工表emp&#xf…

开源TTS+gtx1080+cuda11.7+conda+python3.9吊打百度TTS

一、简介 开源项目&#xff0c;文本提示的生成音频模型 https://github.com/suno-ai/bark Bark是由Suno创建的基于变换器的文本到音频模型。Bark可以生成极为逼真的多语种演讲以及其他音频 - 包括音乐、背景噪音和简单的声音效果。该模型还可以产生非言语沟通&#xff0c;如…

Android 11 Display亮灭屏

系统休眠唤醒的时候会涉及到亮灭屏&#xff0c;下面分析下系统&#xff08;高通8155平台&#xff09;Display亮灭屏流程 1. 点亮屏幕 点亮屏幕入口在framework/base/下面LightsService.java&#xff0c;然后通过调用SurfaceControl.java ,最终调用到framework/native下面的Sur…

【洁洁送书第五期】为什么我们要了解可观测性工程

导读 可观测性已成为一个热门话题&#xff0c;并广受关注。随着它的普及&#xff0c;“可观测性”不幸被误作“监控”或“系统遥测”的同义词。可观测性是软件系统的一个特征。而且&#xff0c;只有当团队采用新的实践进行持续开发时&#xff0c;才能在生产软件系统中有效利用这…

Day14-2-NodeJS后端开发流程

Day14-NodeJS后端工程化流程 一 apifox工具 apifox是目前最好的接口调试工具 1 环境搭建 安装登录创建项目接口里面创建对应文件夹在指定的文件夹里面创建接口2 GET请求 1 apifox发送GET请求 2 后端接收GET请求 router.get("/getUserinfo"

Azure防火墙

文章目录 什么是Azure防火墙如何部署和配置创建虚拟网络创建虚拟机创建防火墙创建路由表&#xff0c;关联子网、路由配置防火墙策略配置应用程序规则配置网络规则配置 DNAT 规则 更改 Srv-Work 网络接口的主要和辅助 DNS 地址测试防火墙 什么是Azure防火墙 Azure防火墙是一种用…

EndNote(四)【文献引文格式、同步、智能分组、引文报告、文献笔记导出】

参考文献格式&#xff1a;&#xff08;官网引文格式下载文章引文格式更新-word&#xff09; 官网引文格式下载 网址&#xff1a;Downloads | EndNote 点击output styles&#xff1a; 下下来之后&#xff0c;放在这个路径下&#xff1a; 双击看一下&#xff1a; ok. 比如我们要…

引领行业高质量发展|云畅科技参编《低代码开发平台创新发展路线图(2023)》

8月8日-9日&#xff0c;中国电子技术标准化研究院于北京顺利召开《低代码开发平台创新发展路线图&#xff08;2023&#xff09;》封闭编制会。云畅科技、浪潮、百度、广域铭岛等来自低代码开发平台解决方案供应商、用户方、科研院所等近30家相关单位的40余位专家参与了现场编制…

mybatis动态SQL的运用

一、mybatis动态SQL update 表名 set name?,age? where id? 如果我们的前台没有传参&#xff0c;比如没有传入我们的name值&#xff0c;name就会把字段值改为null&#xff0c;这就违背了我们编码的初衷。 许多人会使用类似于where 1 1 来作为前缀&#xff0c;在代码中会用i…

STL---vector

目录 1.vector的介绍及使用 2.vector接口说明及模拟实现 2.1vector定义 2.2vector迭代器的使用 2.3vector容量 2.4vector增删查改 3迭代器失效 4.使用memcpy拷贝 5.模拟实现 1.vector的介绍及使用 vector的文档介绍 1. vector是表示可变大小数组的序列容器。 2. 就像数…

战略定位、战略咨询、战略定位咨询:一站式解决您的困惑

战略定位、战略咨询和战略定位咨询是三个密切相关但又不同的概念。它们都与企业的发展战略有关&#xff0c;但各自的侧重点不同。在这篇文章中&#xff0c;我们将详细介绍这三个词的定义&#xff0c;并为您提供一些实用的建议&#xff0c;帮助您更好地理解和应用这些概念。 战略…

ardupilot开发 --- 仿真篇

环境 安装wsl2&#xff0c;win11自带wsl&#xff0c;win10需要安装&#xff1b;git clone ardupilot 源码&#xff1b;安装 Linux下的build环境&#xff1b;安装 flightgear&#xff08;非必须&#xff09; sudo apt-get install flightgearbuild 想要仿真的载具类型&#xff…

漏洞挖掘和安全审计的技巧与策略

文章目录 漏洞挖掘&#xff1a;发现隐藏的弱点1. 源代码审计&#xff1a;2. 黑盒测试&#xff1a;3. 静态分析工具&#xff1a; 安全审计&#xff1a;系统的全面评估1. 渗透测试&#xff1a;2. 代码审计&#xff1a;3. 安全策略审查&#xff1a; 代码示例&#xff1a;SQL注入漏…

怎么维护自己的电脑

文章目录 我的电脑日常维护措施维护技巧键盘&屏幕清洁清理磁盘空间控制温度 电脑换电池 无论是学习还是工作&#xff0c;电脑都是IT人必不可少的重要武器&#xff0c;一台好电脑除了自身配置要经得起考验&#xff0c;后期主人对它的维护也是决定它寿命的重要因素&#xff0…

安防视频云平台EasyNVR视频汇聚平台硬件无法进入服务器的问题处理方法

EasyNVR是基于RTSP/Onvif协议的视频接入、处理及分发的安防视频云平台&#xff0c;可提供的视频能力包括&#xff1a;设备接入、实时视频直播、录像、云存储、录像回放与检索、告警、级联等&#xff0c;平台可支持将接入的视频流进行全平台、全终端的分发&#xff0c;分发的视频…

三、pikachu之文件上传

文章目录 1、文件上传概述2、客户端检测2.1 客户端检测原理及绕过方法2.2 实际操作之client check 3、服务端检测3.1 MIME type3.3.1 检测原理3.3.2 绕过方法3.3.3 实际操作之MIME type 3.2 文件内容检测3.2.1 检测原理3.2.2 绕过方式3.2.3 实际操作之getimagesize() 3.3 其他服…

微服务中间件--微服务保护

微服务保护 微服务保护a.sentinelb.sentinel限流规则1) 流控模式1.a) 关联模式1.b) 链路模式 2) 流控效果2.a) 预热模式2.b) 排队等待 3) 热点参数限流 c.隔离和降级1) Feign整合Sentinel2) 线程隔离2.a) 线程隔离&#xff08;舱壁模式&#xff09; 3) 熔断降级3.a) 熔断策略-慢…