关于模板的大致认识【C++】

文章目录

  • 函数模板
    • 函数模板的原理
    • 函数模板的实例化
    • 模板参数的匹配原则
  • 类模板
    • 类模板的定义格式
    • 类模板的实例化
  • 非类型模板参数
  • typename 与class
  • 模板的特化
    • 函数模板特化
    • 类模板特化
      • 全特化
      • 偏特化
  • 模板的分离编译

函数模板

函数模板的原理

template <typename T> //模板参数 ——类型 
void Swap(T& x1, T& x2)
{T tmp = x1;x1 = x2;x2 = tmp;
}
int main()
{int a = 0, b = 1;double c = 1.1, d = 2.2;swap(a, b);swap(c, d);int* p1 = &a;int* p2 = &b;swap(p1, p2);return 0;
}

函数模板是一个蓝图,它本身并不是函数,是编译器用使用方式产生特定具体类型函数的模具。所以其实模板就是将本来应该我们做的重复的事情交给了编译器
在这里插入图片描述

在编译器编译阶段,对于模板函数的使用,编译器需要根据传入的实参类型来推演生成对应类型的函数以供调用。比如:当用double类型使用函数模板时,编译器通过对实参类型的推演,将T确定为double类型,然后产生一份专门处理double类型的代码,对于字符类型也是如此

函数模板的实例化

用不同类型的参数使用函数模板时,称为函数模板的实例化。模板参数实例化分为:隐式实例化和显式实例化

1、隐式实例化:让编译器根据实参推演模板参数的实际类型

template<class T>
T Add(const T& left , const T& right)
{return left + right;
}
int main()
{int a1 = 10, a2 = 20;double d1 = 10.1, d2 = 20.2;//函数模板根据调用,自动推导模板参数的类型 ,实例化对应的参数 cout << Add(a1, a2) << endl;cout << Add(d1, d2) << endl;//实参传递的类型, 推演T的类型  cout << Add( a1, (int)d1  ) << endl;cout << Add( (double)a1, d1) << endl;//显示实例化 ,用指定的类型实例化 ,相当于隐式类型转换 cout << Add<int> (a1, d1) << endl;cout << Add<double>(a1, d1) << endl;return 0;
}

2、显式实例化:在函数名后的<>中指定模板参数的实际类型

template<class T>
T Add(const T& left , const T& right)
{return left + right;
}
int main()
{int a1 = 10, a2 = 20;double d1 = 10.1, d2 = 20.2;//函数模板根据调用,自动推导模板参数的类型 ,实例化对应的参数 cout << Add(a1, a2) << endl;cout << Add(d1, d2) << endl;//实参传递的类型, 推演T的类型  cout << Add( a1, (int)d1  ) << endl;cout << Add( (double)a1, d1) << endl;//显示实例化 ,用指定的类型实例化 ,相当于隐式类型转换 cout << Add<int> (a1, d1) << endl;cout << Add<double>(a1, d1) << endl;return 0;
}
template<class T >T * Alloc(int n )
{return new T[n];
}int main(){//有些函数无法自动推导函数模板的类型,实例化对应的参数,只能显式实例化double *p1 = Alloc <double>(10);return 0;}

模板参数的匹配原则

类模板

类模板 ,无法推演实例化,所以类模板都是显式实例化

class Stack
{
public :Stack(int capacity = 3){_array= new  T[capacity];_size = 0;_capacity = 0; }void Push(const T &  data){_array[_size++] = data;}~Stack(){free(_array);_size = _capacity = 0;}
private :T * _array;int _size;int _capacity;
};
int main()
{Stack <int> s1(); // int Stack <double> s2();//double Stack <char> s3();//char//Stack <int ,doule> s2();return 0; 
}

类模板的定义格式

函数类模板的声明和定义分离

template<class T>class Stack
{
public://声明 Stack(int capacity );void Push(const T& data){_array[_size++] = data;}~Stack(){free(_array);_size = _capacity = 0;}
private:T* _array;int _size;int _capacity;
};
//定义 
template<class T>Stack<T>::Stack(int capacity )
{_array = new  T[capacity];_size = 0;_capacity = 0;
}
int main()
{Stack <int> s1(); // int Stack <double> s2();//double Stack <char> s3();//char//Stack <int ,doule> s2();return 0;
}

对于普通类,类名和类型是一样的,但是对于类模板 ,类名和类型是不一样的 上面的代码中Stack是类名 ,但是Stack < T >是类型

类模板的实例化

非类型模板参数

模板参数可分为类型形参非类型形参

类型形参: 出现在模板参数列表中,跟在class或typename关键字之后的参数类型名称。

非类型形参: 用一个常量作为类(函数)模板的一个参数,在类(函数)模板中可将该参数当成常量来使用。

如果此时有一个需求,实现一个静态数组的类,就需要用到非类型模板参数

template<class T, size_t N> //N:非类型模板参数
// N是常量 ,且N必须是整形
class StaticArray
{
public:size_t arraysize(){return N;}
private:T _array[N]; //利用非类型模板参数指定静态数组的大小
};
int main()
{StaticArray<int, 10> a1; //定义一个大小为10的静态数组cout << a1.arraysize() << endl; //10StaticArray<int, 100> a2; //定义一个大小为100的静态数组cout << a2.arraysize() << endl; //100return 0;
}

注意:

1. 浮点数、类对象以及字符串是不允许作为非类型模板参数的。
2. 非类型的模板参数必须在编译期就能确认结果。

typename 与class

一般来说,typename 和class 没有什么区别,但是在有一种情景下是有区别的

template<class Container>
void Print(  const Container& v  )
{//Container::const_iterator it = v.begin();是不行的// 因为编译不确定Container::const_iterator是类型还是对象// typename的作用就是明确告诉编译器这里是类型,等模板实例化再去找typename Container::const_iterator it = v.begin();while (it != v.end() ){cout << *it << " ";it++;}cout << endl;
}int main()
{vector<int> v;v.push_back(1);v.push_back(2);v.push_back(3);v.push_back(4);Print(v);list<int> lt1;lt1.push_back(1);lt1.push_back(2);lt1.push_back(3);lt1.push_back(4);Print(lt1);return 0;
}

以上情景需要使用typename

模板的特化

通常情况下,使用模板可以实现一些与类型无关的代码,但对于一些特殊类型的可能会得到一些错误的结果,需要特殊处理

模板的特化 即:在原模板类的基础上,针对特殊类型所进行特殊化的实现方式。
模板特化中分为函数模板特化 和 类模板特化。

函数模板特化

1、首先必须要有一个基础的函数模板。
2、关键字template后面接一对空的尖括号<>。
3、函数名后跟一对尖括号,尖括号中指定需要特化的类型。
4、函数形参表必须要和模板函数的基础参数类型完全相同,否则不同的编译器可能会报一些奇怪的错误。

template<class T>
bool Less(T left ,T right)
{return left < right;
}
//函数模板的特化
template<>
bool Less<int * >(int * left, int* right)
{return *left < *right;
}
int main()
{int a = 1, b = 2;cout << Less(1, 2);cout << endl;cout << Less(&a, &b);return 0;
}

类模板特化

不仅函数模板可以进行特化,类模板也可以针对特殊类型进行特殊化实现,并且类模板的特化又可分为全特化和偏特化(半特化)。

全特化

全特化即是将模板参数列表中所有的参数都确定化。

例如,对于以下类模板:

template<class T1, class T2>
class Data
{
public:Data() {cout<<"Data<T1, T2>" <<endl;}private:T1 _d1;T2 _d2;
};template<>
class Data<int, char>
{
public:Data() {cout<<"Data<int, char>" <<endl;}private:int _d1;char _d2;
};void TestVector()
{Data<int, int> d1;Data<int, char> d2;
}

偏特化

偏特化:任何针对模版参数进一步进行条件限制设计的特化版本。

偏特化有以下两种表现方式:
1、部分特化 ,将模板参数类表中的一部分参数特化

template<class T1, class T2>
class Data
{
public:Data(){cout<<"Data<T1, T2>" <<endl;}
private:T1 _d1;T2 _d2;
};// 将第二个参数特化为int
template <class T1>
class Data<T1, int>
{
public:Data() {cout<<"Data<T1, int>" <<endl;}
private:T1 _d1;int _d2;
};
int main()
{Data<double, int> d1;//偏特化Data<int, double> d2;//调用基础的模板return 0;
}

2、参数更进一步的限制

template<class T1, class T2>
class Data
{
public:Data(){cout<<"Data<T1, T2>" <<endl;}
private:T1 _d1;T2 _d2;
};
//偏特化:对类型的进一步限制
template<class T1, class T2>
class Data<T1*, T2*>
{
public:Data() { cout << "Data<T1*, T2*>" << endl; }
private:
};int main()
{Data<int, int > d1;Data<int, double > d2;Data<int*, double > d3;Data<int*, double* > d4;Data<void*, void* > d5;return 0;
}

模板的分离编译

一个程序(项目)由若干个源文件共同实现,而每个源文件单独编译生成目标文件,最后将所有目标文件链接起来形成单一的可执行文件的过程称为分离编译模式。

在分离编译模式下,我们一般创建三个文件

一个头文件用于进行函数声明
一个源文件用于对头文件中声明的函数进行定义
最后一个源文件用于调用头文件当中的函数

举个例子:如果对一个加法函数模板进行分离编译

在这里插入图片描述

如果这三个文件生成可执行文件时,会在链接阶段产生报错
这是为什么呢?

C / C++程序要运行起来一般要经历以下四个步骤:
预处理、编译、汇编、链接

如果需要详细的了解这四个步骤,请点击这里

在这里插入图片描述

这三个文件经过预处理后就只剩下两个文件了

Visual Studio平台:

预处理后就进入编译阶段,
虽然在 main.i 当中有调用Add函数的代码,但是在 main.i 里面也有Add函数模板的声明,在编译阶段并不会发现任何语法错误,在编译阶段将 Add.i 和 main.i 翻译成了汇编语言,即将 Add.i 和 main.i 变成了Add.s 和 main.s

进入汇编阶段,利用 Add.s 和 main.s 这两个文件分别生成了两个目标文件,
即将 Add.s 和 main.s变成了Add.o和 main.o

最后将Add.o和 main.o进行链接操作生成a.out,
但在链接时发现,在main函数当中调用的两个Add函数实际上并没有被真正定义
原因是函数模板T还没有实例化,可以将模板定义的位置显式实例化。(这种方法不实用,不推荐使用)。

总结:
编译阶段看有没有声明,声明是一种承诺
在编译阶段,检查声明,查看函数名、参数、返回值是否对上,如果对上,则编译阶段通过
进入链接阶段,编译器会拿着修饰后的函数去其他文件符号表查找,如果查到,则链接阶段通过

模板分离编译失败的原因:
在函数模板定义的地方(Add.cpp)没有进行实例化,而在需要实例化函数的地方(main.cpp)没有模板函数的定义,无法进行实例化。

解决方法

  1. 将声明和定义放到一个文件 “xxx.hpp” 里面或者xxx.h其实也是可以的。推荐使用这种。
  2. 模板定义的位置显式实例化。(这种方法不实用,不推荐使用)。

如果你觉得这篇文章对你有帮助,不妨动动手指给点赞收藏加转发,给鄃鳕一个大大的关注你们的每一次支持都将转化为我前进的动力!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49554.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Next.js - Loading UI and Streaming

特殊文件 loading.js 可帮助您使用 React Suspense 创建有意义的加载用户界面。使用此约定&#xff0c;您可以在加载路由段内容时显示来自服务器的即时加载状态。渲染完成后&#xff0c;新的内容会自动切换进来。 即时加载状态 即时加载状态是在导航时立即显示的后备用户界面…

使用Token方式实现用户身份鉴权认证

一、什么是Token&#xff1f; Token&#xff0c;也称为“令牌”&#xff0c;是服务端生成的一串字符串&#xff0c;以作客户端进行请求的一个令牌&#xff0c;当第一次登录后&#xff0c;服务器生成一个Token便将此Token返回给客户端&#xff0c;以后客户端只需带上这个Token前…

湘潭大学 湘大 XTU OJ 1116 水仙花数 题解(非常详细)

链接 1116 题面 Description 如果一个n位数的每个数位的n次方和就是本身&#xff0c;那么我们称这种数为“水仙花数”。比如371,337313273431 371。现给你一个数&#xff0c;请求这个数是否是水仙花数。 输入 有多组样例。每个样例占一行&#xff0c;为一个整数a&#xff0…

智慧充电桩物联网方案架构

智慧充电桩物联网采用“云-管-边-端”的边缘计算物联网架构&#xff0c;融合5G、AI、Wi-Fi 6等技术&#xff0c;实现充电基础设施由数字化向智能化演进。智慧充电桩物联网方案架构设计&#xff0c;如下图所示&#xff1a; 云端&#xff1a; 物联网平台具备广泛协议的南向接入…

【Spring框架】Spring事务的介绍与使用方法

⚠️ 再提醒一次&#xff1a;Spring 本身并不实现事务&#xff0c;Spring事务 的本质还是底层数据库对事务的支持。你的程序是否支持事务首先取决于数据库 &#xff0c;比如使用 MySQL 的话&#xff0c;如果你选择的是 innodb 引擎&#xff0c;那么恭喜你&#xff0c;是可以支持…

Windows使用MobaXterm远程访问ubuntu20.04桌面

参考ubuntu 2020.4 安装vnc 一、脚本文件 remote_setup.sh脚本文件内容&#xff1a; #! /bin/bash #参考链接&#xff1a;https://blog.csdn.net/hailangdeyingzi/article/details/124507304 sudo apt update sudo apt install x11vnc -y sudo x11vnc -storepasswd telpo.12…

【多天线传输技术】迫零检测算法、串行干扰相消算法、排序串行干扰相消算法

clc; clear; close all; len_s100000; % 信号长度 snr0:2:20;%信噪比 len_snrlength(snr); s2_1zeros(1,4); ber_zfzeros(1,len_snr); ber_zf_siczeros(1,len_snr); ber_zf_chsiczeros(1,len_snr); for ii1:len_snrerror_zf20;for i1:len_ssnrandi([0,1],4,1); %产生随机信号mo…

SQL注入之堆叠查询

文章目录 堆叠查询是什么&#xff1f;堆叠查询修改所有用户密码堆叠查询删除数据库恢复数据库 堆叠查询是什么&#xff1f; 在SQL中&#xff0c;分号;是用来表示一条sql语句的结束。试想一下我们在; 结束一个sql语句后继续构造下一条语句&#xff0c;会不会一起执行&#xff1f…

vscode里配置C#环境并运行.cs文件

vscode是一款跨平台、轻量级、开源的IDE, 支持C、C、Java、C#、R、Python、Go、Nodejs等多种语言的开发和调试。下面介绍在vscode里配置C#环境。这里以配置.Net SDK v5.0&#xff0c;语言版本为C#9.0&#xff0c;对应的开发平台为VS2019&#xff0c;作为案例说明。 1、下载vsc…

JavaScript下载excel文件

文章目录 通过链接下载a标签下载方法注意 获取文件流请求体配置下载文件流 总结 通过链接下载 a标签 对于已知地址的目标文件&#xff0c;前端可以使用 a标签 来直接下载&#xff0c;使用a标签下载使用到两个属性 download&#xff1a;下载文件名href&#xff1a;目标文件下…

PHP实现每日蛋白质摄入量计算器

1.laravel 路由 //每日蛋白质摄入计算器Route::get(api/protein/intake, FormulaControllerproteinIntakeCal); 2.代码 /*** 每日蛋白质摄入计算器*/public function proteinIntakeCal(){$number intval($this->request(number));$goalFactor array(0.8, 1.16, 0.8, 1.16,…

Shiro学习总结

第一章 入门概述 1.概念 shiro是一个Java安全框架&#xff0c;可以完成&#xff1a;认证、授权、加密、会话管理、与web集成、缓存… 2.优势 ● 易于使用&#xff0c;构建简单 ● 功能全面 ● 灵活&#xff0c;可以在任何应用程序环境中工作&#xff0c;并且不需要依赖它们…

Spring缓存深入解析:@Cacheable的使用详解

摘要&#xff1a;在本文中&#xff0c;我们将深入研究Spring框架中的Cacheable注解。我们会通过详细的Java示例&#xff0c;探讨如何使用这个功能强大的注解来提升应用程序性能。 一、什么是缓存&#xff1f; 在计算机科学中&#xff0c;缓存是一种存储技术&#xff0c;用于保…

LeetCode863. 二叉树中所有距离为 K 的结点(相关话题:深度遍历,广度遍历)

题目描述 给定一个二叉树(具有根结点 root), 一个目标结点 target ,和一个整数值 k 。 返回到目标结点 target 距离为 k 的所有结点的值的列表。 答案可以以 任何顺序 返回。 示例 1: 输入:root = [3,5,1,6,2,0,8,null,null,7,4], target = 5, k = 2 输出:[7,4,1] 解释…

SQL注入之延时注入

文章目录 延时注入是什么&#xff1f;延时注入获取数据库版本号 延时注入是什么&#xff1f; 延时注入就是利用sleep()函数通过if语句判断所写的语句真假&#xff0c;如果为真返回我们想要的东西&#xff08;例如&#xff1a;数据库的长度&#xff0c;数据库的名字等&#xff0…

如何拉取Gitee / GitHub上的Unity项目并成功运行

前言 由于目前大部分人使用的仓库都是Gitee或者是GitHub&#xff0c;包括小编的公司所使用的项目仓库也包括了Gitee&#xff1b;我们需要学习技术栈时都会去百度或者是去GitHub上看看别人的项目观摩学习&#xff0c;可能很多小白在遇到拉取代码时出现各种问题&#xff0c;或者…

智能安全帽_防抖视频定位智能安全帽头盔

智能安全帽具备出色的性能、超低功耗、广范围覆盖和简单的外围电路等优势&#xff0c;同时还拥有丰富的外部接口。它支持移动/联通/电信的4G5G网络&#xff0c;涵盖了LTE-TDD频段(B34/B38/B39/B40/B41)、LTE-FDD频段(B1/B3/B5/B8)、WCDMA频段(B1/B5/B8)、TD-SCDMA频段(B34/B39)…

二、11.系统交互

fork 函数原型是 pid_t fork(void&#xff09;&#xff0c;返回值是数字&#xff0c;该数字有可能是子进程的 pid &#xff0c;有可能是 0&#xff0c;也有可能是-1 。 1个函数有 3 种返回值&#xff0c;这是为什么呢&#xff1f;可能的原因是 Linux 中没有获取子进程 pid 的方…

R语言机器学习方法在生态经济学领域

近年来&#xff0c;人工智能领域已经取得突破性进展&#xff0c;对经济社会各个领域都产生了重大影响&#xff0c;结合了统计学、数据科学和计算机科学的机器学习是人工智能的主流方向之一&#xff0c;目前也在飞快的融入计量经济学研究。表面上机器学习通常使用大数据&#xf…

static相关知识点详解

文章目录 一. 修饰成员变量二. 修饰成员方法三. 修饰代码块四. 修饰类 一. 修饰成员变量 static 修饰的成员变量&#xff0c;称为静态成员变量&#xff0c;该变量不属于某个具体的对象&#xff0c;是所有对象所共享的。 public class Student {private String name;private sta…