自动驾驶芯片:GPU 的现在和 ASIC 的未来

640?wx_fmt=png

来源:乐晴智库精选


▌车载芯片的发展趋势(CPU-GPU-FPGA-ASIC)


过去汽车电子芯片以与传感器一一对应的电子控制单元(ECU)为主,主要分布与发动机等核心部件上。随着汽车智能化的发展,汽车传感器越来越多,传统的分布式架构逐渐落后,由中心化架构DCU、MDC逐步替代


随着人工智能发展,汽车智能化形成趋势,目前辅助驾驶功能渗透率越来越高,这些功能的实现需借助于摄像头、雷达等新增的传感器数据,其中视频(多帧图像)的处理需要大量并行计算,传统CPU算力不足,这方面性能强大的GPU替代了CPU。再加上辅助驾驶算法需要的训练过程,GPU+FPGA成为目前主流的解决方案。


640?wx_fmt=png


着眼未来,自动驾驶也将逐步完善,届时又会加入激光雷达的点云(三维位置数据)数据以及更多的摄像头和雷达传感器,GPU也难以胜任,ASIC性能、能耗和大规模量产成本均显著优于GPU和FPGA,定制化的ASIC芯片可在相对低水平的能耗下,将车载信息的数据处理速度提升更快,随着自动驾驶的定制化需求提升,ASIC专用芯片将成为主流。本文以如上顺序梳理车载芯片发展历程,探讨未来发展方向。


640?wx_fmt=jpeg


▌车载芯片的过去—以CPU为核心的ECU


ECU的核心CPU


ECU(ElectronicControlUnit)是电子控制单元,也称“行车电脑”,是汽车专用微机控制器。一般ECU由CPU、存储器(ROM、RAM)、输入/输出接口(I/O)、模数转换器(A/D)以及整形、驱动等大规模集成电路组成。


640?wx_fmt=jpeg


ECU的工作过程就是CPU接收到各个传感器的信号后转化为数据,并由Program区域的程序对Data区域的数据图表调用来进行数据处理,从而得出具体驱动数据,并通过CPU针脚传送到相关驱动芯片,驱动芯片再通过相应的周边电路产生驱动信号,用来驱动驱动器。


即传感器信号——传感器数据——驱动数据——驱动信号这样一个完整工作流程。


分布式架构向多域控制器发展


汽车电子发展的初期阶段,ECU主要是用于控制发动机工作,只有汽车发动机的排气管(氧传感器)、气缸(爆震传感器)、水温传感器等核心部件才会放置传感器,由于传感器数量较少,为保证传感器-ECU-控制器回路的稳定性,ECU与传感器一一对应的分布式架构是汽车电子的典型模式。


后来随着车辆的电子化程度逐渐提高,ECU占领了整个汽车,从防抱死制动系统、4轮驱动系统、电控自动变速器、主动悬架系统、安全气囊系统,到现在逐渐延伸到了车身各类安全、网络、娱乐、传感控制系统等。


640?wx_fmt=jpeg


随着汽车电子化的发展,车载传感器数量越来越多,传感器与ECU一一对应使得车辆整体性下降,线路复杂性也急剧增加,此时DCU(域控制器)和MDC(多域控制器)等更强大的中心化架构逐步替代了分布式架构。


域控制器(DomainControlUnit)的概念最早是由以博世,大陆,德尔福为首的Tier1提出,是为了解决信息安全,以及ECU瓶颈的问题。


根据汽车电子部件功能将整车划分为动力总成,车辆安全,车身电子,智能座舱和智能驾驶等几个域,利用处理能力更强的多核CPU/GPU芯片相对集中的去控制每个域,以取代目前分布式汽车电子电气架构。


而进入自动驾驶时代,控制器需要接受、分析、处理的信号大量且复杂,原有的一个功能对应一个ECU的分布式计算架构或者单一分模块的域控制器已经无法适应需求,比如摄像头、毫米波雷达、激光雷达乃至GPS和轮速传感器的数据都要在一个计算中心内进行处理以保证输出结果的对整车自动驾驶最优。


因此,自动驾驶车辆的各种数据聚集、融合处理,从而为自动驾驶的路径规划和驾驶决策提供支持的多域控制器将会是发展的趋势,奥迪与德尔福共同开发的zFAS,即是通过一块ECU,能够接入不同传感器的信号并进行对信号进行分析和处理,最终发出控制命令。


640?wx_fmt=jpeg


▌车载芯片的现在—以GPU为核心的智能辅助驾驶芯片


人工智能的发展也带动了汽车智能化发展,过去的以CPU为核心的处理器越来越难以满足处理视频、图片等非结构化数据的需求,同时处理器也需要整合雷达、视频等多路数据,这些都对车载处理器的并行计算效率提出更高要求,而GPU同时处理大量简单计算任务的特性在自动驾驶领域取代CPU成为了主流方案。


GPUVs.CPU


CPU的核心数量只有几个(不超过两位数),每个核都有足够大的缓存和足够多的数字和逻辑运算单元,并辅助很多复杂的计算分支。而GPU的运算核心数量则可以多达上百个(流处理器),每个核拥有的缓存大小相对小,数字逻辑运算单元也少而简单。


CPU和GPU最大的区别是设计结构及不同结构形成的不同功能。CPU的逻辑控制功能强,可以进行复杂的逻辑运算,并且延时低,可以高效处理复杂的运算任务。


而GPU逻辑控制和缓存较少,使得每单个运算单元执行的逻辑运算复杂程度有限,但并列大量的计算单元,可以同时进行大量较简单的运算任务。


640?wx_fmt=jpeg


GPU占据现阶段自动驾驶芯片主导地位


相比于消费电子产品的芯片,车载的智能驾驶芯片对性能和寿命要求都比较高,主要体现在以下几方面:


1、耗电每瓦提供的性能;2、生态系统的构建,如用户群、易用性等;3、满足车规级寿命要求,至少1万小时稳定使用。


目前无论是尚未商业化生产的自动驾驶AI芯片还是已经可以量产使用的辅助驾驶芯片,由于自动驾驶算法还在快速更新迭代,对云端“训练”部分提出很高要求,既需要大规模的并行计算,又需要大数据的多线程计算,因此以GPU+FPGA解决方案为核心;在终端的“推理”部分,核心需求是大量并行计算,从而以GPU为核心。


640?wx_fmt=jpeg


▌相关公司


NVIDIA


NVIDIA在自动驾驶领域的成就正是得益于他们在GPU领域内的深耕,NVIDIAGPU专为并行计算而设计,适合深度学习任务,并且能够处理在深度学习中普遍存在的向量和矩阵操作。相对于Mobileye专注于视觉处理,NVIDIA的方案重点在于融合不同传感器。


640?wx_fmt=jpeg

640?wx_fmt=jpeg


2016年,英伟达在DrivePX2平台上推出了三款产品,分别是配备单GPU和单摄像头及雷达输入端口的DrivePX2Autocruise(自动巡航)芯片(下图左上)、配备双GPU及多个摄像头及雷达输入端口的DrivePX2AutoChauffeur(自动私人司机)芯片(右上)、配备多个GPU及多个摄像头及雷达输入端口的DrivePX2FullyAutonomousDriving(全自动驾驶)芯片(下方)。


640?wx_fmt=jpeg


以目前的销售情况,DrivePX2搭载上一代Pascal架构GPU已经实现量产,并且已经搭载在Tesla的量产车型ModelS以及ModelX上。


目前PX2仍然是NVIDIA自动驾驶平台出货的主力,Tesla,Audi和ZF等对外公布DrivePX2应用在量产车上。


Xavier是DrivePX2的进化版本,搭配了最新一代的Volta架构GPU,相较于DrivePX2性能将提升近一倍,2017年年底量产。


由于多家主机厂L3级别以上自动驾驶量产车的计划在2020年左右,而Xavier的量产计划将能和自动驾驶车的研发周期相互配合(一般3年左右),因此Xavier的合作都是有量产车落地计划的。


而对于较早与NVIDIA达成合作的车厂来说,他们在小批量测试、量产的优先级别以及可定制化空间等方面都能获得一定的优势。


640?wx_fmt=jpeg


目前,L4及以上的市场基本上被NVIDIA垄断,CEO黄仁勋称全球有300余家自动驾驶研发机构使用DrivePX2。


DrivePX2单价为1.6万美金,功耗达425瓦,但目前没有达到车规,按功耗和成本看,只能小规模测试阶段使用。


四维图新


国内地图行业龙头,向ADAS和自动驾驶进军。公司成立于2002年,是国内首家获导航地图制作资质的企业(目前仅13家),为领先的数字地图内容、车联网与动态交通信息服务、基于位置的大数据垂直应用服务的提供商之一。


其拳头业务——地图业务,以国内60%的份额稳居垄断地位。2017年以来,公司收购杰发科技、入股中寰卫星与禾多科技,“高精度地图+芯片+算法+软件”的自动驾驶产业链全方位布局雏形已现。


高精度地图:代表国内最高水平。


公司以地图起家,目前国内高精度地图仅两家玩家(另一家为高德),公司深度绑定获得宝马、大众、奔驰、通用、沃尔沃、福特、上汽、丰田、日产、现代、标致等主流车企发展,占绝对优势。2017年公司实现支持L3级别(至少20个城市)的高精度地图,计划于2019年覆盖所有城市,并为L4的推出做准备。


公司地图编译能力亮眼,全球首位提供NDS地图从生产到编译环节。此外,公司在荷兰、美国硅谷、新加坡等地设立研发中心和分支机构,合作伙伴涵盖国际主流车厂、新一代整车企业以及腾讯、滴滴、搜狗、华为等国内知名企业。


芯片:收购杰发科技布局汽车芯片。


杰发科技(2017年3月完成收购)脱胎于联发科,主攻车载信息娱乐系统芯片。


现阶段在国内后装市场市占率超70%,前装超30%(主要为吉利、丰田等车企),其车规级IVI芯片被多家国际主流零部件厂商采用,并计划推出AMP、MCU及TPMS(胎压监测)芯片等新一代产品。公司通过收购杰发科技,具备了为车厂提供高性能汽车电子芯片的能力,打通从软件到硬件的关键性关卡,并与蔚来、威马、爱驰亿维等造车新势力公司达成了合作。


该芯片采用64位QuadA53架构,内置硬件图像加速引擎,支持双路高清视频输出,和四路高清视频输入,能同时支持高级车载影音娱乐系统全部功能和丰富的ADAS功能。


功能包括:360°全景泊车系统、车道偏移警示系统LDW、前方碰撞警示系统FCW、行人碰撞警示系统PCW、交通标志识别系统TSR、车辆盲区侦测系统BSD、驾驶员疲劳探测系统DFM和后方碰撞预警系统RCW等。


640?wx_fmt=jpeg


全志科技


在今年5月的CESAsia,全志科技发布首款车规级处理器T7,同时发布基于T7的多种智能座舱产品形态。


T7是数字座舱车规(AEC-Q100)平台型处理器,支持Android、Linux、QNX系统,集成多路高清影像输入和输出,完美支持高清多媒体处理,内置的EVE视觉处理单元可提升辅助驾驶运算效率。


640?wx_fmt=jpeg


该款芯片虽然是首款通过车规的国产中控主机芯片,但还处于起步阶段,根据正常汽车电子芯片的生命周期,要规模应用至少需要两年时间,而等到形成较多的用户和良好的生态还需很多资源投入以及时间的积累。


因此国产车载芯片不论在自动驾驶领域还是中控或辅助驾驶领域,想要真正形成量产与国外老牌巨头竞争,都还需要大量人力、资本和时间。


640?wx_fmt=jpeg


▌车载芯片的未来—以ASIC为核心的自动驾驶芯片


ASICvsGPU+FPGA


GPU适用于单一指令的并行计算,而FPGA与之相反,适用于多指令,单数据流,常用于云端的“训练”阶段。


此外与GPU对比,FPGA没有存取功能,因此速度更快,功耗低,但同时运算量不大。结合两者优势,形成GPU+FPGA的解决方案。


FPGA和ASIC的区别主要在是否可以编程。FPGA客户可根据需求编程,改变用途,但量产成本较高,适用于应用场景较多的企业、军事等用户;而ASIC已经制作完成并且只搭载一种算法和形成一种用途,首次“开模”成本高,但量产成本低,适用于场景单一的消费电子、“挖矿”等客户。


目前自动驾驶算法仍在快速更迭和进化,因此大多自动驾驶芯片使用GPU+FPGA的解决方案。未来算法稳定后,ASIC将成为主流。


640?wx_fmt=jpeg


计算能耗比,ASIC>FPGA>GPU>CPU,究其原因,ASIC和FPGA更接近底层IO,同时FPGA有冗余晶体管和连线用于编程,而ASIC是固定算法最优化设计,因此ASIC能耗比最高。


相比前两者,GPU和CPU屏蔽底层IO,降低了数据的迁移和运算效率,能耗比较高。同时GPU的逻辑和缓存功能简单,以并行计算为主,因此GPU能耗比又高于CPU。


640?wx_fmt=jpeg


▌ASIC是未来自动驾驶芯片的核心和趋势


结合ASIC的优势,我们认为长远看自动驾驶的AI芯片会以ASIC为解决方案,主要有以下几个原因:


640?wx_fmt=jpeg


综上ASIC专用芯片几乎是自动驾驶量产芯片唯一的解决方案。由于这种芯片仅支持单一算法,对芯片设计者在算法、IC设计上都提出很高要求。


以上并非下定论目前ASIC为核心的芯片一定比GPU+FPGA的芯片强,由于目前自动驾驶算法还在快速迭代和升级过程中,过早以固有算法生产ASIC芯片长期来看不一定是最优选择。


▌相关公司


Mobileye


Intel在ADAS处理器上的布局已经完善,包括Mobileye的ADAS视觉处理,利用Altera的FPGA处理,以及英特尔自身的至强等型号的处理器,可以形成自动驾驶整个硬件超级中央控制的解决方案。


640?wx_fmt=jpeg


Mobileye具有自主研发设计的芯片EyeQ系列,由意法半导体公司生产供应。现在已经量产的芯片型号有EyeQ1至EyeQ4,EyeQ5正在开发进行中,计划2020年面世,对标英伟达DrivePXXavier,并透露EyeQ5的计算性能达到了24TOPS,功耗为10瓦,芯片节能效率是DriveXavier的2.4倍。


英特尔自动驾驶系统将采用摄像头为先的方法设计,搭载两块EyeQ5系统芯片、一个英特尔凌动C3xx4处理器以及Mobileye软件,大规模应用于可扩展的L4/L5自动驾驶汽车。该系列已被奥迪、宝马、菲亚特、福特、通用等多家汽车制造商使用。


640?wx_fmt=jpeg


从硬件架构来看,该芯片包括了一组工业级四核MIPS处理器,以支持多线程技术能更好的进行数据的控制和管理(下图左上)。


多个专用的向量微码处理器(VMP),用来应对ADAS相关的图像处理任务(如:缩放和预处理、翘曲、跟踪、车道标记检测、道路几何检测、滤波和直方图等,下图右上)。


一颗军工级MIPSWarriorCPU位于次级传输管理中心,用于处理片内片外的通用数据。


此外通过行业访谈调研等途径了解到,Mobileye在L1-L3智能驾驶领域具有极大的话语权,对Tire1和OEM非常强势,其算法和芯片绑定,不允许更改。


640?wx_fmt=jpeg


寒武纪


640?wx_fmt=jpeg


5月3日,寒武纪科技在2018产品发布会上发布了多个IP产品——采用7nm工艺的终端芯片Cambricon1M、云端智能芯片MLU100等。


其中寒武纪1M芯片是公司第三代IP产品,在TSMC7nm工艺下8位运算的效能比达5Tops/w(每瓦5万亿次运算),同时提供2Tops、4Tops、8Tops三种尺寸的处理器内核,以满足不同需求。


1M还将支持CNN、RNN、SVM、k-NN等多种深度学习模型与机器学习算法的加速,能够完成视觉、语音、自然语言处理等任务。通过灵活配置1M处理器,可以实现多线和复杂自动驾驶任务的资源最大化利用。它还支持终端的训练,以此避免敏感数据的传输和实现更快的响应。


寒武纪首款云端智能芯片CambriconMLU100同期发布,同时公布了在R-CNN算法下MLU100与英伟达TeslaV100(2017)和英伟达TeslaP4(2016)的对比,从参数上看,主要对标TeslaP4。最后说明芯片从设计到落地应用面临的潜在风险:


640?wx_fmt=jpeg


地平线


2017年地平线发布了新一代自动驾驶芯片“征程”和配套软件平台方案“雨果”,同时还发布了应用于智能摄像头的“旭日”处理器。


“征程”是一款专用AI芯片,采用地平线的第一代BPU架构,可实时处理1080p@30视频,每帧中可同时对200个目标进行检测、跟踪、识别,典型功耗1.5W,每帧延时小于30ms。CEO余凯介绍,地平线的芯片更聚焦在针对不同场景下的具体应用,相比于英伟达的方案,在功耗上低一个数量级,价格也会有更大的竞争力。


2018年亚洲CES,地平线宣布推出从L2到L4级别全系列的自动驾驶计算平台。


地平线星云,基于征程1.0芯片,能够以车规级标准满足L1和L2级别的自动驾驶的需求,能同时对行人、机动车、非机动车、车道线、交通标志牌、红绿灯等多类目标进行精准的实时监测与识别;并可满足车载设备严苛的环境要求,以及复杂环境下的视觉感知需求,支持L2级别ADAS功能。


地平线Matrix1.0,内置地平线征程2.0处理器架构,最大化嵌入式AI计算性能,是面向L3/L4的自动驾驶解决方案,可满足自动驾驶场景下高性能和低功耗的需求。


依托地平线公司自主研发的工具链,开发者和研究人员可以基于Matrix平台部署神经网络模型,实现开发、验证、优化和部署。


640?wx_fmt=jpeg


百度“昆仑”


7月4日百度AI开发者大会上,李彦宏发布了由百度自主研发的中国首款云端全功能AI芯片——“昆仑”。“昆仑”基于百度8年的AI加速器经验的研发,预计将于明年流片。


“昆仑”采用14nm三星工艺,是业内设计算力最高的AI芯片(100+瓦功耗下提供260Tops性能);512GB/s内存带宽,由几万个小核心构成。


“昆仑”可高效地同时满足训练和推断的需求,除了常用深度学习算法等云端需求,还能适配诸如自然语言处理,大规模语音识别,自动驾驶,大规模推荐等具体终端场景的计算需求。


此外可以支持paddle等多个深度学习框架,编程灵活度高。同时也有媒体对该产品提出疑义,主要有以下两点:


640?wx_fmt=jpeg


GoogleTPU


GoogleTPU于2016年在GoogleI/O上宣布,当时该公司表示TPU已在其数据中心内使用了一年以上。该芯片专为Google的TensorFlow(一个符号数学库,用于神经网络等机器学习应用)框架而设计。


GoogleTPU是专用的,并不面向市场,谷歌仅表示“将允许其他公司通过其云计算服务购买这些芯片。”


今年2月,谷歌在其云平台博客上宣布的TPU服务开放价格大约为每cloudTPU(180TFLOPS和64GB内存)每小时6.50美元。


Google使用TPU开发围棋系统AlphaGo和AlphaZero以及进行Google街景视频文字处理等,能够在不到五天的时间内找到街景数据库中的所有文字,此外TPU也用于提供Google搜索结果的排序。


TPU与同期的CPU和GPU相比,可以提供15-30倍的性能提升,以及30-80倍的效率(性能/瓦特)提升。


640?wx_fmt=jpeg


Xilinx&深鉴科技


Xilinx赛灵思是FPGA的先行者和领导者,1984年,赛灵思发明了现场可编程门阵列FPGA,作为半定制化的ASIC,顺应了计算机需求更专业的趋势。


FPGA的好处是可编程以及带来的灵活配置,同时还可以提高整体系统性能,比单独开发芯片整个开发周期大为缩短,但缺点是价格、尺寸等因素。


在汽车ADAS和自动驾驶解决方案上,赛灵思的FPGA和SOC产品家族衍生出三个模块:


自动驾驶中央控制器ZynqUltraScale+MPSoC


前置摄像头Zynq-7000/ZynqUltraScale+MPSoC


多传感器融合系统ZynqUltraScale+MPSoC


640?wx_fmt=jpeg


Zynq采用单一芯片即可完成ADAS解决方案的开发,SOC平台大幅提升了性能,便于各种捆绑式应用,能实现不同产品系列间的可扩展性,可帮助系统厂商加快在环绕视觉、3D环绕视觉、后视摄像头、动态校准、行人检测、后视车道偏离警告和盲区检测等ADAS应用的开发时间。并且可以让OEM和Tier1在平台上添加自己的IP以及赛灵思自己的扩展。


640?wx_fmt=jpeg


深鉴科技成立于2016年,其创始团队有着深厚的清华背景,专注于神经网络剪枝、深度压缩技术及系统级优化。2018年7月17日,赛灵思宣布收购深鉴科技。


自成立以来,深鉴科技就一直基于赛灵思的技术平台开发机器学习解决方案,推出的两个用于深度学习处理器的底层架构—亚里士多德架构和笛卡尔架构的DPU产品,都是基于赛灵思FPGA器件。


对于赛灵思来说,看好深鉴科技基于机器学习的软件、算法,以及面向云侧和端侧硬件架构的优势;对于深鉴科技,后期发展高昂的研发费用、高成本的芯片设计、流片、试制、认证、投片量产,投靠赛灵思能够降低随之而来的风险,进入芯片战争的持久战。


2018年6月,深鉴科技宣布进军自动驾驶领域,自主研发的ADAS辅助驾驶系统——DPhiAuto,目前已获得日本与欧洲一线车企厂商和Tier1的订单,即将实现量产。


640?wx_fmt=jpeg


DPhiAuto,基于FPGA,是面向高级辅助驾驶和自动驾驶的嵌入式AI计算平台,可提供车辆检测、行人检测、车道线检测、语义分割、交通标志识别、可行驶区域检测等深度学习算法功能,是一套针对计算机视觉环境感知的软硬件协同产品。


功耗方面,可以在10-20W的功耗范围内,实现等效性能,能效比指标高于目前主流的CPU、GPU方案。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/494812.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

电动汽车:新一轮三年十倍,“补贴”结束“高端”开启

来源:乐晴智库精选摘要:从最早的十城千辆新能源车示范推广,到2014年正式启动的二级市场新能源车大行情,再到当下新能源乘用车型的快速升级迭代,新能源汽车产业发展和投资已历经8余年。▌新能源汽车投资,推倒…

使用easyUI给datagrid添加pagination

author YHC 这个示例展示我们如何从服务器端加载数据和如何添加pagination 到datagrid. 查看 Demo 创建 DataGrid 从服务器端加载数据, 你应该设置url属性, 在你的服务器端你应该返回JSON格式数据.请看datagrid文档得到更多关于它的数据格式信息. <table id"tt" c…

一篇文章搞懂数据仓库:四种常见数据模型(维度模型、范式模型等)

目录 写在前面 一、为什么要进行数据仓库建模&#xff1f; 二、四种常见模型 2.1 维度模型 2.1.1 星型模型 2.1.2 雪花模型 2.1.3 星座模型 2.2 范式模型 2.3 Data Vault模型 2.4 Anchor模型 三 数据模型的评价标准 小编有话 写在前面 大数据时代&#xff0c;维度…

学习C语言可以从以下几个方面入手

学习C语言可以从以下几个方面入手&#xff1a; 了解基础知识&#xff1a;首先&#xff0c;你需要了解C语言的基本语法和规则&#xff0c;包括变量、数据类型、运算符、控制结构等。可以通过阅读相关的教材或在线教程来学习这些基础知识。动手实践&#xff1a;理论知识的学习是…

王飞跃谈GE艰难的数字化转型启示:从工业智联网到工业5.0

来源&#xff1a;德先生外患&#xff1a;2018年6月26日&#xff0c;通用电气&#xff08;下文称GE&#xff09;被剔除出道琼斯工业平均指数&#xff0c;而GE自1907年即是道指成分股&#xff0c;至今坚守了111年。2017年以来&#xff0c;通用电气股价从30美元左右下跌到现在的13…

一篇文章搞懂数据仓库:常用ETL工具、方法

目录 一、什么是ETL&#xff1f; 二、ETL & ELT 三、常用的ETL工具 3.1 sqoop 3.2 DataX 3.3 Kettle 3.4 canal 3.5 StreamSets 四、ETL加载策略 4.1 增量 4.2 全量 4.3 流式 小编有话 一、什么是ETL&#xff1f; ETL&#xff0c;是英文Extract-Transform-Lo…

经典排序之 堆排序

开了个公众号「aCloudDeveloper」&#xff0c;专注技术干货分享&#xff0c;期待与你相遇。 Author: bakari Date: 2012.7.30 排序算法有很多种&#xff0c;每一种在不同的情况下都占有一席之地。关于排序算法我分“经典排序之”系列分别述之。本篇为堆排序。 堆排序是运用二叉…

操作系统之进程概念

进程概念 进程是什么&#xff1a; 表面上来说进程是程序的一个执行实例&#xff0c;或者是一个正在执行的程序等&#xff0c;从操作系统的角度来说&#xff0c;程序运行需要将代码数据加载到内存中&#xff0c;由于在操作系统中运行了很多的程序&#xff0c;操作系统就必须去管…

也谈压缩感知和贝叶斯大脑

来源&#xff1a;科学网压缩感知和人工智能都是当下很热很热的研究课题。不过许多论文数学论述高深莫测&#xff0c;加之一大堆各种千奇百怪的数学符号&#xff0c;不仅让人望而生畏&#xff0c;望而却步。笔者对希望用形象的比喻把问题大致轮廓讲清楚就好。所谓压缩感知是什么…

一篇文章搞懂数据仓库:三种事实表(设计原则,设计方法、对比)

目录 1、三种事实表概述 2、三种事实表对比 3、事实表设计 8 大原则 4、事实表设计方法 第一步&#xff1a;选择业务过程及确定事实表类型 第二步&#xff1a;声明粒度 第三步&#xff1a;确定维度 第四步&#xff1a;确定事实 事实表作为数据仓库维度建模的核心&#…

深思考人工智能蝉联SMP2018多轮语义对话冠军,报告解读多轮人机对话实现过程...

人机对话技术近年来受到了学术界和产业界的广泛关注&#xff0c;其发展影响并推动着语音识别与合成、自然语言理解、对话管理以及自然语言生成等研究的进展。众多产业界巨头相继推出了人机对话技术相关产品&#xff0c;并将人机对话技术作为其公司的重点研发方向。8月3日&#…

一篇文章搞懂数据仓库:数据仓库规范设计

目录 一、为什么要进行规范设计&#xff1f; 二、设计规范 - 指标 三、命名规范 - 表命名 3.1 常规表 3.2 中间表 3.3 临时表 3.4 维度表 四、开发规范 五、流程规范 一、为什么要进行规范设计&#xff1f; 无规矩、不方圆。规范设计是在具体开发工作之前制定的&…

map的详解及常见面试题

map的概念 map是STL中的一个关联式容器&#xff0c;它提供一对一的K-V的数据处理能力&#xff0c;由于这个特性&#xff0c;在我们需要完成Key-Value数据处理的时候可以很方便的调用。map的底层结构是红黑树&#xff0c;这棵树对数据有自动排序的功能&#xff0c;所以map中的数…

无处不在的人工智能,IBM沃森的20个行业应用

来源&#xff1a;资本实验室聚焦前沿科技创新与传统产业升级自2011年在美国综艺电视节目《危险边缘》中一战成名后&#xff0c;IBM的Watson就一直是最受关注的人工智能之一。从菜谱分析到球队管理&#xff0c;从健康顾问到酒店礼宾服务&#xff0c;Watson基于自然语言处理和机器…

一篇文章搞懂数据仓库:数据仓库架构-Lambda和Kappa对比

在介绍Lambda和Kappa架构之前&#xff0c;我们先回顾一下数据仓库的发展历程&#xff1a; 传送门-数据仓库发展历程 写在前面 咳&#xff0c;随着数据量的暴增和数据实时性要求越来越高&#xff0c;以及大数据技术的发展驱动企业不断升级迭代&#xff0c;数据仓库架构方面也在…

宇宙和你,本质上其实只是个八维数字?

剑桥大学的数学物理学家Cohl Furey正在寻找粒子物理标准模型和八元数之间的联系。八元数的乘法规则被编码在被称为法诺面的三角图中。来源&#xff1a; 环球科学对于一维、二维乃至四维的数字&#xff0c;人们都不陌生&#xff1a;一维的实数一直都存在于经典物理中&#xff0c…

一篇文章搞懂数据仓库:数据应用--OLAP

目录 1、OLAP和OLTP的区别 2、OLAP分类 3、OLAP基本操作 4、OLAP选型 1、olap和oltp的区别 OLTPOLAP对象业务开发人员分析决策人员功能日常事务处理面向分析决策模型关系模型多维模型数据量几条或几十条记录&#xff1e;百万于万条记录操作类型增、删、查、改(CRUD)查询为主…

欧洲、美国、中国智慧城市的不同实践路径

来源&#xff1a;远望智库摘要&#xff1a;随着ICT、大数据、物联网等各类新兴技术的不断发展&#xff0c;智慧城市的运营和实践也不断趋于成熟。随着ICT、大数据、物联网等各类新兴技术的不断发展&#xff0c;智慧城市的运营和实践也不断趋于成熟。通过整理欧美各大典型智慧城…

使用IOUtils和FileUtils

文本输出应该比较常用&#xff0c;以前都是通过反复的创建InputStream, InputReader, OutputStream, OutputWriter等去输入输出文本&#xff0c;比较麻烦。Apache提供了一个commons-io.jar包&#xff0c;里面有很多IO相关的工具&#xff0c;比如输入输出文本等&#xff0c;着实…

重磅推荐:机器人行业深度报告

来源&#xff1a;WPR随着中国人口红利消失&#xff0c;机器人不仅在制造业上正在替代工人&#xff0c;还将在军事、服务、娱乐等领域取代人类&#xff0c;“钢铁侠”已不仅仅存在于美国科幻电影中&#xff0c;而正走入我们的生活。本篇报告对机器人行业及龙头上市公司进行分析&…