利用 CRISPR 基因编辑技术,人类正在做七件“疯狂”的事

640?wx_fmt=jpeg

来源:36Kr

编译:喜汤


很少有哪种现代科学创新能像CRISPR基因编辑技术一样影响深远。有了它,科学家们可以精确地改变任何细胞的DNA。CRISPR技术成为新宠,部分原因是它比早期基因编辑技术更容易使用。尽管CRISPR还没有彻底大展身手,但它已经被用在很多地方了。我们搜集了7个最令人吃惊的例子。


1. 猪也可以捐献器官了


几十年来,科学家们提出了很多有争议的想法,例如可以用动物的器官来帮助缓解器官移植短缺的问题。目前在美国,有超过114000人等待接受器官移植。过去,把动物器官移植到人的身上的企图失败了,因为人体的免疫系统排斥外来组织(人类首次心脏移植手术是在1964年,当时用的是黑猩猩的心脏,但两个小时内病人就去世了)。另一个问题是移植动物器官的过程中,人类可能会感染。


研究人员认为CRISPR能够解决这些问题。


eGenesis这家公司脱胎于哈佛大学的遗传学家George Church的实验室,它利用CRISPR技术将猪身上适合的器官移植给人类。猪的许多器官——如心脏和肺——和人类的差不多大。


eGenesis研究员使用CRISPR技术剔除了猪的DNA中可能感染给人的病毒,还使用CRISPR修改了免疫系统基因,防止人体排斥移植的器官。可以确信的是,能够适用在人体身上的猪器官面世还需要一定的时间。


2. 创造新式水果


你可能不知道地樱桃这种东西,但是Joyce Van Eck希望这种水果总有一天会家喻户晓。


这种水果和西红柿差不多大,但甜度跟菠萝和芒果差不多。它可以在美国种植,但相对比较少见,因为不怎么好种。


Eck是康奈尔大学的副教授,她和合作者Zachary Lippman在冷泉港实验室使用CRISPR 改造了地樱桃,使之更为丰产。“我们认为这是一种新奇的水果,只需要稍微改进一些,就可以成为易于在美国种植的高产作物,”Eck说。


Eck和Lippman采用技术使地樱桃生长得更紧凑。Eck表示接下来她们会使用CRISPR技术使地樱桃比原来大25%。这一研究结果发表在2018年10月的《Nature Plants》上。


Eck认为CRISPR将在改造农作物、增加食品营养价值、保护作物免受极端天气和气候变化影响方面发挥很重要的作用。“我们的主要粮食作物就那么几种,”她说,“我认为这是一个解决歉收问题并提供多元化饮食的办法。”


3. 把花从紫色变成白色


日本科学家正在使用CRISPR技术改变传统园林植物的颜色。


研究人员使用CRISPR成功扰乱了DFR-B基因——这一基因决定着植物的茎、叶、花的颜色。通过这一办法,研究人员将花色从紫色变成了白色。


这一工作去年发表,揭示了CRISPR的巨大潜力。


4. 修改有缺陷的人类胚胎


去年,一位科学家和团队利用CRISPR技术从人类胚胎中剔除了可能诱发心脏疾病的遗传基因。这是CRISPR首次在全美被用在修改人类胚胎上。


这一遗传基因——MYBPC3基因——突变后会导致肥厚性心肌病,大约每500人就有一人携带这种基因,一旦发病会引起心力衰竭和猝死。而被修改的基因及其后代未来则不会出现这种突变问题。


日本也可能很快推进类似的研究,该国已经发布了准则草案允许采用CRISPR和其他基因修改技术改造人类胚胎。


但这一行为毫无疑问将引发重大争议,因为科学绝对不是利用CRISPR技术改造和设计后代这么简单。


5. 治疗犬类肌肉萎缩


CRISPR技术还可以用来治疗犬类肌肉萎缩。2018年8月的一份报告表明人类在对杜氏肌肉营养不良症的治疗方面迈出了一大步,这一遗传性疾病在幼犬中很常见,大约每3500只幼犬中就有一只。


利用CRISPR技术治疗,肌肉营养不良蛋白基因在肌肉和心脏组织中突变的概率被降低至8%。


“这项工作的重要性是不言而喻的,”西北大学遗传医学中心主任Elizabeth McNally表示,“修改少量的DNA,就能产生这么大的改变。”


McNally同时也表示,如果这项研究未来应用在人体上,她也不会惊讶。


6. 发现治疗癌症和血液疾病的新办法


如今,调查人员正使用CRISPR技术体外编辑人类细胞,然后把它们转移回患者体内。


在美国,宾夕法尼亚大学和一家名为Tmunity的公司招募了18名多发性骨髓瘤、肉瘤、和或是出现癌症复发的志愿者进行实验,研究人员用经过CRISPR技术编辑的免疫细胞攻击癌细胞。


另一家公司RISPR Therapeutics计划使用CRISPR技术治疗β地中海贫血和镰状细胞病——两种相关的血液疾病,由相同基因的突变引起。这些疾病会导致人体血红蛋白出现问题。在一份提供给媒体的声明中,该公司表示正在招募β地中海贫血的临床志愿者。


试验都将从人体中提取骨髓干细胞,用CRISPR技术进行编辑后转移回患者体内,希望帮助患者产生血红蛋白。


特拉华州保健卫生研究所主任Eric Kmiec表示,CRISPR被用来治疗非常严重的疾病一点儿也不令人意外,“我认为人们还是很期待这项技术能够日臻成熟的,因为他们知道这何其重要。”


7. 消灭蚊子


蚊子会传播疾病,尤其是疟疾。在全球范围内,每年有超过400000人死于疟疾。为了减少传播疾病,一些科学家提出使用CRISPR技术对蚊子进行改造。


一篇发表于2018年9月的文章称,伦敦帝国理工学院的研究人员发现,CRISPR基数有助于抑制某种在冈比亚传播的疟疾。


调查人员利用CRISPR改变所谓的“doublesex”基因,雌蚊在继承了这一修改后基因之后,就没法叮人或产卵了。研究人员发现,八代以后的雌蚊甚至无法繁殖了。


目前这一研究还仅仅只限于实验室。但今年早些时候,非联的领导人认为这一技术有利于抗击疟疾,但它恐怕还需要好几年才能真正在野外进行实验。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/493633.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

吴恩达作业3:利用深层神经网络实现小猫的分类

利用4层神经网络实现小猫的分类,小猫训练样本是(209,64*64*312288),故输入节点是12288个,隐藏层节点依次为20,7,5,输出层为1。 首先看文件路径,dnn_utils_v2.py代码是激活…

A-KAZE论文研读

AKAZE是KAZE的加速版本。KAZE在构建非线性空间的过程中很耗时,在AKAZE中将Fast Explicit Diffusion(FED)加入到金字塔框架可以dramatically speed-up。在描述子方面,AKAZE使用了更高效的Modified Local Difference Binary(M-LDB),可以从非线性…

和你抢“饭碗”的40家服务机器人企业大盘点!

来源:物联网智库摘要:本文将对国内近40家服务机器人企业进行汇总介绍,所选企业在其相应版块活跃度较高。从三个大类进行了细分盘点。国家机器人联盟(IFR)根据应用环境将机器人分为了工业机器人和服务机器人。服务机器人…

YOLO9000

YOLO9000是YOLO的第三个版本。前两个版本是YOLO v1,YOLO v2,在CVPR2017的文章《Better,Faster,Stronger》中的前半部分都是对前两个版本的介绍,新的内容主要在Stronger部分。YOLO9000中的9000指的是YOLO可以对超过9000种图像进行分类。 Bett…

吴恩达作业4:权重初始化

权重初始化的 正确选择能够有效的避免多层神经网络传播过程中的梯度消失和梯度爆炸问题,下面通过三个初始化的方法来验证: sigmoid导数函数:最大值小于0.25,故经过多层反向传播以后,会导致最初的层,权重无…

先发制人!Waymo将首推商用载人自动驾驶服务,Uber们怕不怕?

编译:费棋来源:AI科技大本营“真的,真的很难。”11 月举办的一场会议上,Alphabet 旗下 Waymo CEO John Krafcik 对做自动驾驶汽车技术的艰难不无感慨。在他看来,未来几十年内,自动驾驶汽车将一直存在限制&a…

利用ORB/AKAZE特征点进行图像配准

Kp1,kp2都是list类型,两幅图都是500个特征点。这和ORB论文中的数据是一样的。4.4章节 Matches也是list类型,找到325个匹配对。 AKAZE文章中提到一个指标:MS(matching score)# Correct Matches/# Features, 如果overlap area error 小于40%…

吴恩达作业5:正则化和dropout

构建了三层神经网络来验证正则化和dropout对防止过拟合的作用。 首先看数据集,reg_utils.py包含产生数据集函数,前向传播,计算损失值等,代码如下: import numpy as np import matplotlib.pyplot as plt import h5py …

十年之后,数字孪生将这样改变我们的工作与生活

来源:资本实验室数字孪生是近几年兴起的非常前沿的新技术,简单说就是利用物理模型,使用传感器获取数据的仿真过程,在虚拟空间中完成映射,以反映相对应的实体的全生命周期过程。在未来,物理世界中的各种事物…

什么是图像

图像,尤其是数字图像的定义,在冈萨雷斯的书中是一个二维函数f(x,y),x,y是空间平面坐标,幅值f是图像在该点处的灰度或者强度。下面通过OpenCV中最常用的图像表示方法Mat来看一下在计算机中是怎么定义图像的。 Mat的定义 OpenCV在2.0之后改用…

吴恩达作业6:梯度检验

梯度检验的目的就是看反向传播过程中的导数有没有较大的误差,首先看Jtheta*x的梯度检验:代码如下 import numpy as np """ Jx*theta的前向传播 """ def forward_propagation(x,theta):Jx*thetareturn J ""&quo…

10年后的计算机会是怎样的?

作者:孙鹏(剑桥大学计算机系博士)来源:新原理研究所上个世纪三十年代,邱奇和图灵共同提出了通用计算机的概念[1]。在接下来的十多年里,因为战争需要下的国家推动,计算机得以很快从理论发展成为实…

什么是图像变换

还是看OpenCV官方手册,我觉得这样可以同时学习如何使用函数和如何理解一些基本概念。 首先,这里的几何变换geometrical transformations是针对2D图像而言的,不改变图像内容而是将像素网格变形deform the pixel grid,映射到目标图…

MSRA20周年研究趋势文章|图像识别的未来:机遇与挑战并存

文/微软亚洲研究院 代季峰 林思德 郭百宁识别图像对人类来说是件极容易的事情,但是对机器而言,这也经历了漫长岁月。在计算机视觉领域,图像识别这几年的发展突飞猛进。例如,在 PASCAL VOC 物体检测基准测试中,检测器的…

吴恩达作业7:梯度下降优化算法

先说说BatchGD用整个训练样本进行训练得出损失值,SGD是只用一个训练样本训练就得出损失值,GD导致训练慢,SGD导致收敛到最小值不平滑,故引入Mini-batch GD,选取部分样本进行训练得出损失值, 普通梯度下降算…

什么是单应矩阵和本质矩阵

知乎上面的大牛还是很多,直接搜Homography或者单应矩阵就能得到很多大神的回答,可能回答中的一句话或者一个链接就够自己学习很久。 其实在之前研究双目视觉的时候就接触了对极几何,通过视觉就可以得到物体的远近信息,这也是特斯…

tensorflow实现反卷积

先看ogrid用法 from numpy import ogrid,repeat,newaxis from skimage import io import numpy as np size3 x,yogrid[:size,:size]#第一部分产生多行一列 第二部分产生一行多列 print(x) print(y) 打印结果: newaxis用法: """ newaxis…

寿命能推算吗?加州大学科学家提出“预测方法”

来源:中国科学报从古至今,从国内到国外,从炼丹术到现代科学,长生不老似乎一直是人类乐此不疲的追求。但若要延缓衰老,首先要弄清是什么造成了衰老。近日,加州大学洛杉矶分校(UCLA)生…

Deep Image Homography Estimation

在知乎问题:深度学习应用在哪些领域让你觉得「我去,这也能行!」?中遇到一篇提交在arXiv 2016(arXiv不是正式发表,只是可以证明原创性,提供时间戳的网站)的文章《Deep Image Homograp…

tensorflow:双线性插值反卷积

首先生成333的黑色图片 """ 生成333黑色图像 """ def produce_image():size 3x, y ogrid[:size, :size] # 第一部分产生多行一列 第二部分产生一行多列z x yz z[:, :, newaxis] # 增加第三维# print(z)img repeat(z, 3, 2)/12 # 在第三…