高德纳咨询公司(Gartner)预测:2019年七大人工智能科技趋势

640?wx_fmt=jpeg

来源:创新研究

摘要:人工智能技术对我们的工作环境、工作种类等等正在产生日益深刻的影响,其结果或好或坏都有可能。为应对这种改变,特别是负面的变化,高德纳咨询公司(Gartner)于2018年12月13日发布《预测2019:AI与未来工作》报告,对AI科技未来7大发展趋势及其对工作的影响进行分析探讨。


尽管科幻小说可能将人工智能机器人描绘成坏人,但一些科技巨头现在也将其用于安全。 微软和优步等公司使用Knightscope K5机器人巡逻停车场和大型户外区域来预测和预防犯罪。 机器人可以读取车牌,报告可疑活动并收集数据以向其所有者报告。


这些人工智能驱动的机器人只是“自主事物”的一个例子,它是2019年Gartner 7大战略技术之一,有可能在未来五年内带来重大中断并带来机遇。


趋势1:自主事物


无论是汽车,机器人还是农业,自主事物都使用AI来执行传统上由人类完成的任务。 智能的复杂程度各不相同,但所有自主事物都使用人工智能与他们的环境进行更自然的交互。


自主事物有五种类型:

机器人 

车辆

无人机

家电

虚拟助理


这五种类型占据四种环境:海洋、陆地、空中和数字。 它们都具有不同程度的能力,协调和智能。 例如,它们可以跨越在空中操作的无人机,人工辅助在田地中完全自主地操作的农业机器人。 这描绘了潜在应用的广泛图景,几乎每个应用程序、服务和物联网对象都将采用某种形式的AI来自动化或增强流程或人为操作。 诸如无人机群之类的协作自主事物将越来越多地推动人工智能系统的未来发展。


趋势2:增强式分析(大数据)


数据科学家现在拥有越来越多的数据来准备,分析和分组,并从中得出结论。鉴于数据量,探索所有可能性变得不可能。这意味着企业可能会错过数据科学家无法探索的假设的关键见解。


增强分析代表了数据和分析能力的第三大浪潮,因为数据科学家使用自动算法来探索更多假设。数据科学和机器学习平台已经改变了企业如何产生分析洞察力。


“到2020年,超过40%的数据科学任务将实现自动化”。


增强分析可识别隐藏的模式,同时消除个人偏见。虽然企业存在无意中将偏差插入算法的风险,但增强分析和自动化洞察最终将嵌入到企业应用程序中。


到2020年,公民数据科学家的数量将比专业数据科学家快5倍。公民数据科学家使用人工智能驱动的增强分析工具,自动化数据科学功能,自动识别数据集,开发假设和识别数据模式。企业将把公民数据科学家视为实现和扩展数据科学能力的一种方式。 Gartner预测,到2020年,超过40%的数据科学任务将实现自动化,从而提高公民数据科学家的生产力和广泛使用。在公民数据科学家和增强分析之间,数据洞察将在整个企业中得到更广泛的应用,包括分析师、决策者和运营工作者。


 趋势3:人工智能驱动的开发


AI驱动的开发着眼于将AI嵌入到应用程序中并使用AI为开发过程创建AI驱动的工具的工具,技术和最佳实践。这一趋势正在沿着三个方面发展:


用于构建基于AI的解决方案的工具正在从针对数据科学家(AI基础设施,AI框架和AI平台)的工具扩展到针对专业开发人员社区(AI平台,AI服务)的工具。借助这些工具,专业开发人员可以将AI驱动的功能和模型注入应用程序,而无需专业数据科学家的参与。


用于构建基于AI的解决方案的工具正在被赋予AI驱动的功能,这些功能可以帮助专业开发人员并自动执行与AI增强型解决方案开发相关的任务。增强分析、自动化测试、自动代码生成和自动化解决方案开发将加速开发过程,并使更广泛的用户能够开发应用程序。


支持AI的工具正在从协助和自动化与应用程序开发(AD)相关的功能演变为使用业务领域专业知识和自动化AD流程堆栈(从一般开发到业务解决方案设计)的更高活动。


市场将从专注于与开发人员合作的数据科学家转移到使用作为服务提供的预定义模型独立运营的开发人员。这使更多的开发人员能够利用这些服务,并提高效率。这些趋势也导致虚拟软件开发人员和非专业“公民应用程序开发人员”的主流使用。


趋势4:赋权边缘


边缘计算是一种拓扑,其中信息处理和内容收集和传递更靠近信息源,并且将流量保持在本地将减少延迟。目前,该技术的大部分重点是物联网系统需要在嵌入式物联网世界中提供断开连接或分布式功能。这种类型的拓扑结构将解决高WAN成本和不可接受的延迟水平等挑战。此外,它还将实现数字业务和IT解决方案的细节。


“技术和思维将转变为经验将人们与数百个边缘设备联系起来的地步”。


到2028年,Gartner预计在边缘设备中嵌入传感器,存储、计算和高级AI功能将不断增加。一般而言,智能将走向各种终端设备的边缘,从工业设备到屏幕再到智能手机再到汽车发电机。


 趋势5:沉浸式技术


到2028年,改变用户与世界互动方式的会话平台,以及改变用户感知世界的方式的增强现实(AR)、混合现实(MR)和虚拟现实(VR)等技术将带来新的身临其境的体验。 AR、MR和VR显示出提高生产力的潜力,下一代VR能够感知形状并跟踪用户的位置和MR,使人们能够查看和与他们的世界互动。


到2022年,70%的企业将尝试使用沉浸式技术进行消费和企业使用,25%将部署到生产中。会话平台的未来,从虚拟个人助理到聊天机器人,将结合扩展的感官渠道,使平台能够根据面部表情检测情绪,并且他们将在交互中变得更加对话。


最终,技术和思维将转移到这样的程度,即人们将数百种边缘设备(从计算机到汽车)连接起来。


趋势6:智能空间


智能空间是物理或数字环境,人类和技术支持的系统在日益开放、连接、协调和智能的生态系统中相互作用。随着技术成为日常生活中更加集成的一部分,智能空间将进入加速交付的时期。此外,随着个人解决方案成为智能空间,其他趋势,如AI驱动技术、边缘计算、区块链和数字双胞胎正在朝着这一趋势发展。


智能空间仅在五个关键方面发展:开放性、连通性、协调性、智能性和范围。从本质上讲,智能空间正在发展,因为单个技术从孤岛中产生,共同协作以创建协作和交互环境。智能空间最广泛的例子是智能城市,其中结合商业、住宅和工业社区的区域正在使用智能城市生态系统框架进行设计,所有部门都与社会和社区协作相关联。


趋势7:量子计算


量子计算是一种非经典计算,它基于亚原子粒子的量子态,它将信息表示为表示为量子位或“量子位”的元素。


量子计算机是指数级可扩展且高度并行的计算模型。 想象传统计算机和量子计算机之间差异的一种方法是想象一个巨大的图书馆。


虽然经典计算机会以线性方式读取库中的每本书,但量子计算机会同时读取所有书籍。 量子计算机理论上可以同时处理数百万次计算。 以商业可用、价格合理且可靠的服务形式进行的量子计算将改变一些行业。


颠覆未来 - 智能AI芯片


从推动PCB的生产到在增强现实中发挥不可或缺的作用,下一代人工智能有可能彻底改变我们所知道的生活。谷歌发布自己的TPU以及Egde TPU:TPU是针对TensorFlow上的机器学习工作负载量身定制的定制应用专用集成电路(ASIC)。 虽然第一代TPU仅用于推理,但Cloud TPU适用于推理和机器学习培训。Cloud TPU采用四个定制ASIC构建,可提供强大的64 GB高带宽内存和180 TFLOPS性能。


去年,谷歌宣称它的TPU比现代GPU和推理CPU快15到30倍,并且TOPS / Watt测量值提高了30-80倍。


在旧金山Google Next会议的主题演讲中,Google Cloud的物联网副总裁Injong Rhee宣布推出两款新的AIY项目主板 - AIY Projects Edge TPU Dev Board和Edge TPU Accelerator 围绕谷歌新推出的专用边缘TPU。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”


640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/493251.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

美爆!《自然》公布2018年19张最震撼的科学图片

来源:前瞻网 摘要:2018年注定将载入科学史册:气候上,从加利福尼亚烧到开普敦的致命野火和极端干旱、历史罕见;医学上,克隆和成像技术的进步既带来希望,也产生了争议;生物上,一系列事件让人们意识…

python实现Trie 树+朴素匹配字符串+RK算法匹配字符串+kmp算法匹配字符串

一.trie树应用: 相应leetcode 常用于搜索提示,如当输入一个网址,可以自动搜索出可能的选择。当没有完全匹配的搜索结果,可以返回前缀最相似的可能。 例如三个单词app, apple, add,我们按照以下规则创建了一颗Trie树.对于从树的根…

天才也勤奋!DeepMind哈萨比斯自述:领导400名博士向前,每天工作至凌晨4点

来源:量子位你见过凌晨4点的伦敦吗?哈萨比斯天天见。这位DeepMind创始人、AlphaGo之父,一直是全球赞颂的当世天才,但每天要到凌晨4点,才能睡下。这是哈萨比斯最新采访中透露的作息时间,他告诉《星期日泰晤士…

RNN知识+LSTM知识+encoder-decoder+ctc+基于pytorch的crnn网络结构

一.基础知识: 下图是一个循环神经网络实现语言模型的示例,可以看出其是基于当前的输入与过去的输入序列,预测序列的下一个字符. 序列特点就是某一步的输出不仅依赖于这一步的输入,还依赖于其他步的输入或输…

利用flask写的接口(base64, 二进制, 上传视频流)+异步+gunicorn部署Flask服务+多gpu卡部署

一.flask写的接口 1.1 manage.py启动服务(发送图片base64版) 这里要注意的是用docker的话,记得端口映射 #coding:utf-8 import base64 import io import logging import picklefrom flask import Flask, jsonify, request from PIL import Image from sklearn import metric…

2018中国自动驾驶市场专题分析

来源:智车科技未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网&#…

python写日志

需要再加入按照日期生成日志 #coding:utf-8 import logging import logging.handlers class Logger:logFile def __init__(self, logFile):self.logFile logFileself.logger logging.getLogger(mylogger)self.logger.setLevel(logging.INFO)rf_handler logging.handlers.…

MIT科学家Dimitri P. Bertsekas最新2019出版《强化学习与最优控制》(附书稿PDF讲义)...

来源:专知摘要:MIT科学家Dimitri P. Bertsekas今日发布了一份2019即将出版的《强化学习与最优控制》书稿及讲义,该专著目的在于探索这人工智能与最优控制的共同边界,形成一个可以在任一领域具有背景的人员都可以访问的桥梁。REINF…

yolov3 anchors用kmeans聚类出先验框+anchor宽高比分析

一.yolov v3聚类出框 # -*- coding: utf-8 -*- import numpy as np import random import argparse import os# # 参数名称 # parser argparse.ArgumentParser(description使用该脚本生成YOLO-V3的anchor boxes\n) # parser.add_argument(--input_annotation_txt…

Geoff Hinton:全新的想法将比微小的改进更有影响力

来源:AI科技评论摘要:日前,WIRED 对 Hinton 进行了一次专访,在访谈中,WIRED 针对人工智能带来的道德挑战和面临的挑战等问题进行了提问,以下为谈话内容。“作为一名谷歌高管,我认为在公开场合抱…

修改TOMCAT服务器图标为应用LOGO

在tomcat下部署应用程序,运行后,发现在地址栏中会显示tomcat的小猫咪图标。有时候,我们自己不想显示这个图标,想换成自己定义的的图标,那么按如下方法操作即可: 参考网上的解决方案:1、将$TOMCA…

python连接mysql的一些基础知识+安装Navicat可视化数据库+flask_sqlalchemy写数据库

一.mysql基础知识 1.connect连接数据库 import pymysqldef get_conn():conn pymysql.connect(hostxxx.xxx.xxx.xxx, port3306, userroot, passwd, dbnewspaper_rest) # db:表示数据库名称return conn 2.创建表 im…

工业互联网平台创新发展白皮书(2018)

来源:走向智能论坛摘要:近日,在“2018年产业互联网与数据经济大会——首届工业互联网平台创新发展暨两化融合推进会”上,国家工业信息安全发展研究中心尹丽波主任发布并解读了《工业互联网平台创新发展白皮书(2018&…

迭代器模式和组合模式混用

迭代器模式和组合模式混用 前言 园子里说设计模式的文章算得上是海量了,所以本篇文章所用到的迭代器设计模式和组合模式不提供原理解析,有兴趣的朋友可以到一些前辈的设计模式文章上学学,很多很有意思的。在Head First 设计模式这本书中&…

python实现可扩容队列

#coding:utf-8 """ fzh created on 2019/10/15 构建一个队列 """ import datetimeclass LoopQueue(object):def __init__(self, n10):self.arr [None] * (n1) # 由于特意浪费了一个空间,所以arr的实际大小应该是用户传入的容量1sel…

5G 产业链重要投资节点

来源:兴业证券 ▌5G:大通信容量及超低延时,未来多项应用的基础5G:高工作频率以及频谱带宽带来高通信容量5G(5thgeneration)是指第五代移动电话通信标准。3GPP(第三代合作伙伴计划,电信标准化机构)将5G标准分为了NSA(非独立组网)和SA(独立组网…

Kneser猜想与相关推广

本文本来是想放在Borsuk-Ulam定理的应用这篇文章当中。但是这个文章实在是太长,导致有喧宾夺主之嫌,从而独立出为一篇文章,仅供参考。$\newcommand{\di}{\mathrm{dist}}$ (图1:Kneser叙述他的猜想原文手稿)…

python .py文件变为.so文件进行加密

1.mytest.py 需要加密的内容 #coding:utf-8 import datetimeclass Today():def get_time(self):print(datetime.datetime.now())def say(self):print("hello word!")today Today() today.say() today.get_time() 2.执行setup.py 也就是加密脚本 from…

从技术上解读大数据的应用现状和开源未来

来源:网络大数据作者 | 韩锐、 Lizy Kurian John、詹剑锋摘要:近年来,随着大数据系统的快速发展,各式各样的开源基准测试集被开发出来,以评测和分析大数据系统并促进其技术改进。然而,迄今为止,…

十八岁华裔天才携手「量子计算先驱」再次颠覆量子计算

来源:机器之心编译参与:刘晓坤、李泽南摘要:量子计算再一次「被打败了」。今年 8 月,刚刚年满 18 岁的 Ewin Tang 证明了经典算法能以和量子计算机相近的速度解决推荐问题,这位天才少女(更正:不…