数据预测之BP神经网络具体应用以及matlab实现

1.具体应用实例。根据表2,预测序号15的跳高成绩。

表2 国内男子跳高运动员各项素质指标

序号

跳高成绩()

30行进跑(s)

立定三级跳远()

助跑摸高()

助跑4—6步跳高()

负重深蹲杠铃()

杠铃半蹲系数

100

(s)

抓举

()

     1

2.24

3.2

9.6

3.45

2.15

140

2.8

11.0

50

2

2.33

3.2

10.3

3.75

2.2

120

3.4

10.9

70

3

2.24

3.0

9.0

3.5

2.2

140

3.5

11.4

50

4

2.32

3.2

10.3

3.65

2.2

150

2.8

10.8

80

5

2.2

3.2

10.1

3.5

2

80

1.5

11.3

50

6

2.27

3.4

10.0

3.4

2.15

130

3.2

11.5

60

7

2.2

3.2

9.6

3.55

2.1

130

3.5

11.8

65

8

2.26

3.0

9.0

3.5

2.1

100

1.8

11.3

40

9

2.2

3.2

9.6

3.55

2.1

130

3.5

11.8

65

10

2.24

3.2

9.2

3.5

2.1

140

2.5

11.0

50

11

2.24

3.2

9.5

3.4

2.15

115

2.8

11.9

50

12

2.2

3.9

9.0

3.1

2.0

80

2.2

13.0

50

13

2.2

3.1

9.5

3.6

2.1

90

2.7

11.1

70

14

2.35

3.2

9.7

3.45

2.15

130

4.6

10.85

70

15

 

3.0

9.3

3.3

2.05

100

2.8

11.2

50

 

4.4 (序号15)跳高成绩预测

4.4.1 数据整理

1)我们将前14组国内男子跳高运动员各项素质指标作为输入,即(30m行进跑,立定三级跳远,助跑摸高,助跑4-6步跳高,负重深蹲杠铃,杠铃半蹲系数,100m,抓举),将对应的跳高成绩作为输出。并用matlab自带的premnmx()函数将这些数据归一化处理。

数据集:(注意:每一列是一组输入训练集,行数代表输入层神经元个数,列数输入训练集组数)

P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;

9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;

3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;

2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;

140 120 140 150 80 130 130 100 130 140 115 80 90 130;

2.8 3.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.7 4.6;

11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;

50 70 50 80 50 60 65 40 65 50 50 50 70 70];

T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];

4.4.2 模型建立

4.4.2.1 BP网络模型

    BP网络(Back-ProPagation Network)又称反向传播神经网络, 通过样本数据的训练,不断修正网络权值和阈值使误差函数沿负梯度方向下降,逼近期望输出。它是一种应用较为广泛的神经网络模型,多用于函数逼近、模型识别分类、数据压缩和时间序列预测等。

 

BP网络由输入层、隐层和输出层组成,隐层可以有一层或多层,图2是m×k×n的三层BP网络模型,网络选用S型传递函数, 通过反传误差函数  (Ti为期望输出、Oi为网络的计算输出),不断调节网络权值和阈值使误差函数E达到极小。

BP网络具有高度非线性和较强的泛化能力,但也存在收敛速度慢、迭代步数多、易于陷入局部极小和全局搜索能力差等缺点。可以先用遗传算法对“BP网络”进行优化在解析空间找出较好的搜索空间,再用BP网络在较小的搜索空间内搜索最优解。

4.4.2.2 模型求解 

4.4.2.2.1 网络结构设计

1) 输入输出层的设计

该模型由每组数据的各项素质指标作为输入,以跳高成绩作为输出,所以输入层的节点数为8,输出层的节点数为1。

2) 隐层设计

有关研究表明, 有一个隐层的神经网络, 只要隐节点足够多, 就可以以任意精度逼近一个非线性函数。因此, 本文采用含有一个隐层的三层多输入单输出的BP网络建立预测模型。在网络设计过程中, 隐层神经元数的确定十分重要。隐层神经元个数过多, 会加大网络计算量并容易产生过度拟合问题; 神经元个数过少, 则会影响网络性能, 达不到预期效果。网络中隐层神经元的数目与实际问题的复杂程度、输入和输出层的神经元数以及对期望误差的设定有着直接的联系。目前, 对于隐层中神经元数目的确定并没有明确的公式, 只有一些经验公式, 神经元个数的最终确定还是需要根据经验和多次实验来确定。本文在选取隐层神经元个数的问题上参照了以下的经验公式:

其中, n为输入层神经元个数, m 为输出层神经元个数, a 为[ 1, 10]之间的常数。 

根据上式可以计算出神经元个数为4-13个之间,在本次实验中选择隐层神经元个数为6.

网络结构示意图如下:

 

4.4.2.2.2 激励函数的选取

BP神经网络通常采用Sigmoid可微函数和线性函数作为网络的激励函数。本文选择S型正切函数tansig作为隐层神经元的激励函数。而由于网络的输出归一到[ -1, 1]范围内, 因此预测模型选取S 型对数函数tansig作为输出层神经元的激励函数。

4.4.2.2.3 模型的实现

此次预测选用MATLAB中的神经网络工具箱进行网络的训练, 预测模型的具体实现步骤如下:

将训练样本数据归一化后输入网络, 设定网络隐层和输出层激励函数分别为tansig和logsig函数, 网络训练函数为traingdx, 网络性能函数为mse,隐层神经元数初设为6。设定网络参数。网络迭代次数epochs为5000次, 期望误差goal为0.00000001, 学习速率lr为0. 01。设定完参数后, 开始训练网络。

该网络通过24次重复学习达到期望误差后则完成学习。详细代码见附录。

网络训练完成后,只需要将各项素质指标输入网络即可得到预测数据。

预测结果为:2.20

 

matlab代码:

P=[3.2 3.2 3 3.2 3.2 3.4 3.2 3 3.2 3.2 3.2 3.9 3.1 3.2;
9.6 10.3 9 10.3 10.1 10 9.6 9 9.6 9.2 9.5 9 9.5 9.7;
3.45 3.75 3.5 3.65 3.5 3.4 3.55 3.5 3.55 3.5 3.4 3.1 3.6 3.45;
2.15 2.2 2.2 2.2 2 2.15 2.14 2.1 2.1 2.1 2.15 2 2.1 2.15;
140 120 140 150 80 130 130 100 130 140 115 80 90 130;
2.8 3.4 3.5 2.8 1.5 3.2 3.5 1.8 3.5 2.5 2.8 2.2 2.7 4.6;
11 10.9 11.4 10.8 11.3 11.5 11.8 11.3 11.8 11 11.9 13 11.1 10.85;
50 70 50 80 50 60 65 40 65 50 50 50 70 70];
T=[2.24 2.33 2.24 2.32 2.2 2.27 2.2 2.26 2.2 2.24 2.24 2.2 2.2 2.35];
[p1,minp,maxp,t1,mint,maxt]=premnmx(P,T);
%创建网络
net=newff(minmax(P),[8,6,1],{'tansig','tansig','purelin'},'trainlm');
%设置训练次数
net.trainParam.epochs = 5000;
%设置收敛误差
net.trainParam.goal=0.0000001;
%训练网络
[net,tr]=train(net,p1,t1); 
%输入数据
a=[3.0;9.3;3.3;2.05;100;2.8;11.2;50];
%将输入数据归一化
a=premnmx(a);
%放入到网络输出数据
b=sim(net,a);
%将得到的数据反归一化得到预测数据
c=postmnmx(b,mint,maxt)

最后输出结果:c=2.2000

 

//

转载:https://www.cnblogs.com/sallybin/p/3169572.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/492275.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

谷歌机器人业务重组 花里胡哨没有用 要做实干家

来源: medium 编译 | 网易智能 (乐邦)在机器人领域,谷歌一直都不怎么顺利,尽管在前些年它大举进军,完成了多宗相关的并购交易。最近该公司重组成立Robotics at Google实验室,这对于机器人和智能机器的发展来说是一大步…

BP神经网络识别手写数字项目解析及matlab实现

BP神经网络指传统的人工神经网络,相比于卷积神经网络(CNN)来说要简单些。 人工神经网络具有复杂模式和进行联想、推理记忆的功能, 它是解决某些传统方法所无法解决的问题的有力工具。目前, 它日益受到重视, 同时其他学科的发展, 为其提供了更大的机会。1986 年, Rom…

智能家居市场年增速近30%!苹果看齐亚马逊、谷歌,欲开辟三足鼎立

来源:物联网智库整理摘要:作为世界领先的科技巨头,亚马逊、谷歌和苹果相爱相杀许多年。在智能家居领域,三家的“战争”也会随着市场的成熟而更加激烈。尽管苹果目前稍显落后,但未来市场广阔谁主沉浮仍未可知。近日&…

简单实现UITableView索引功能(中英文首字母索引)(一) ByH罗

UITableView索引功能是常见的,主要是获取中英文的首字母并排序,系统自带获取首字母 //系统获取首字母 - (NSString *) pinyinFirstLetter:(NSString*)sourceString {NSMutableString *source [sourceString mutableCopy];CFStringTransform((__bridge CFMutableStr…

matlab——图像细化

所谓细化,就是从原来的图像中去掉一些点,但仍要保持原来的形状。 1、代码如下: close all;clear all;clc; %关闭所有图形窗口,清除工作空间所有变量,清空命令行 I1imread(circles.png); subplot(1,3,1),imshow(I1);…

中国60家最强汽车初创在此!芯片厂高调入局,智能网联强势霸榜

来源:智东西摘要:中国汽车科技最全地图!2018年,知名市场研究机构毕马威再次设立了中国汽车科技领先企业50强和新锐企业10强榜单评选,并在近日公布了结果。备选企业包括在智能网联、汽车后市场服务、汽车制造技术、出行…

专设AI周会 高管悉数到场 微软CEO有多重视人工智能?

来源:CNBC 翻译 | 网易智能 (天门山)据CNBC报道,一般在每周的周四,微软首席执行官萨蒂亚纳德拉(Satya Nadella)和微软高管团队都要在一起开会,讨论该公司越来越多的人工智能(AI)项目。微软首席技术官凯文斯…

汽车电子:下一个苹果产业链

来源:安信证券摘要:本文将从“7个层级深度解析”这次产业发展红利带来巨大且丰富的投资机遇。汽车电子产业,预计将是继家电、PC和手机之后又一次全产业链级别的大发展机遇,不同的是:1. 其构成产品附加值更高(高稳定/高…

模块化开发之sea.js实现原理总结

seajs官网说:seajs是一个模块加载器,所以学习它并不难。 在我的理解就是:本来我们是需要手动创建 script标签 引入 js文件的,但用seajs后,它就自动帮我们完成这些工作。 这里只说实现原理,具体使用请看seaj…

【干货】百度联合清华大学发布国内首个基于AI实践的《产业智能化白皮书》(附报告全文)...

来源:百度AI在4月9日举行的“百度大学 Alpha 学院首期学员毕业典礼”上,百度联合清华大学发布国内首个基于 AI 实践的行业重磅报告,《产业智能化白皮书——人工智能产业化发展地形初现端倪》。这是国内首次从产业演进的视角探讨 AI 与产业融合…

全球语种谱系图,看看机器翻译需要跨越的大山

来源:语言春秋编辑 | 北外新闻中心 杨丹蕊摘要:当前机器翻译技术可以分成两类,一种是 Rich Resource NMT,也就是双语语料丰富的语言对(比如中文 - 英文);另一种叫 Low Resource NMT&#xff0c…

Big Data Security Part One: Introducing PacketPig

Series Introduction Packetloop CTO Michael Baker (cloudjunky) made a big splash when he presented ‘Finding Needles in Haystacks (the Size of Countries)‘ at Blackhat Europe earlier this year. The paper outlines a toolkit based onApache Pig, Packetpig pack…

美国科学家成功恢复老年人工作记忆,望奠定认知干预疗法基础

来源:科技日报伴随着人体衰老,大脑对信息加工和贮存的能力也必然会下降,但如果这种能力可以被逆转呢?据英国《Nature Neuroscience》杂志8日在线发表的一项研究,美国科学家通过同步脑区节律——按特定节律刺激颞叶和额…

广告机市场和产品

广告机行业分析 前言 关于广告机,不同的人有不同的认识,此部分主要说明文中所指广告机的范围。 在讨论前,先区分几个概念。 1、 广告机与数字标牌 数字标牌是数字标示牌的简称,指代显示任意信息的显示终端;广告机是指…

《工业大数据白皮书》2019版正式发布

来源:悟空智能科技近日,由中国电子技术标准化研究院、全国信息技术标准化技术委员会大数据标准工作组主编,工业大数据产业应用联盟联合主编,联想集团等多家联盟成员企业参编的《工业大数据白皮书(2019版)》…

产品金字塔

制造业产品大概可以分为三个层次,第一层为实物,第二层为服务,第三层为体验。其中产品为基础,服务为改善,共同给客户美好的体验。三者组成一个产品金字塔。第一层,实物。比如手机,满足通话、上网…

学界 | UC伯克利发布一个低成本家居机器人,会叠衣服、会泡咖啡

BLUE 机器人叠毛巾,实际花费时间约 50 秒来源:AI科技评论加州大学伯克利分校 Pieter Abbeel 教授今天在推特公开宣布了伯克利机器人学习实验室最新开发的机器人 BLUE。这款机器人的特点是低成本(不到 5000 美元)、基于 AI 控制&am…

JAVA并发编程3_线程同步之synchronized关键字

在上一篇博客里讲解了JAVA的线程的内存模型,见:JAVA并发编程2_线程安全&内存模型,接着上一篇提到的问题解决多线程共享资源的情况下的线程安全问题。 不安全线程分析 public class Test implements Runnable {private int i 0;private i…

深度学习技术发展趋势浅析

来源:中国信息通信研究院CAICT当前,人工智能发展借助深度学习技术突破得到了全面关注和助力推动,各国政府高度重视、资本热潮仍在加码,各界对其成为发展热点也达成了共识。本文旨在分析深度学习技术现状,研判深度学习发…

(含Matlab源码)算术编码(arithmetic coding)的underflow问题

0、文章结构 文章的行文逻辑如下,看官可以根据需要跳读,节省时间。 1、介绍underflow和overflow. 2、underflow问题起源 3、underflow问起探索 4、underflow和overflow的常见情形 5、处理一些溢出问题的小技巧 6、对其中的两种小技巧的优缺点比较…