新iPhone的黑科技:UWB技术揭秘!

640?wx_fmt=jpeg

来源:鲜枣课堂

9月11日,苹果公司秋季发布会在乔布斯剧院举行。以iPhone 11为代表的一系列新品揭开了神秘的面纱,与“果粉”见面。

新iPhone的特点和参数,相信大家通过各大媒体的介绍已经有所了解。不过有一个细节,不知道大家有没有注意到——本次发布的全系列新款iPhone,全部搭载了支持超宽带(UWB)技术的U1芯片。

640?wx_fmt=jpeg


根据官方的宣传,这项新技术将显著提升苹果手机的空间感知(Spatial Awareness)能力。

640?wx_fmt=jpeg


那么问题来了,空间感知能力是什么意思?U1芯片到底能做什么?UWB超宽带技术又是什么黑科技?所有这些,会不会引领新一轮的智能设备应用创新?

通过本文,笔者将一一为你揭晓这些问题的答案。

     什么是空间感知能力     

所谓的空间感知能力,就是感知方位的能力。更直接一点,就是定位能力。

根据苹果公司的介绍,搭载U1芯片的新iPhone,进一步提升了手机的定位功能,不仅可以感知自己手机的位置,还可以感知周边其他手机的位置。
在使用隔空投送(AirDrop,苹果设备提供的一种无线分享文件的功能)时,基于U1芯片提供的空间感知能力,只需将你的iPhone指向其他人的iPhone,系统就会优先排序(离得越近,优先级越高),让你更快速地共享文件。

640?wx_fmt=jpeg

说白了,利用U1的定位能力,iPhone11可以实现“离我越近越先得到响应”的应用效果。

说到定位,相信大家都很熟悉。我们经常会使用例如高德地图或百度地图这样的APP,里面就有定位和导航的服务。

定位服务帮助我们掌握位置信息,指示方向,增加自身的安全感和掌控感,给我们的工作生活带来了很大的便利。

640?wx_fmt=jpeg

那么,UWB技术和我们现在常用的定位技术,又有什么不同呢?

我们现在常用的定位技术,主要包括卫星定位和基站定位。

卫星定位,是利用人造地球卫星进行点位测量的技术,也是目前使用最为广泛、最受用户欢迎的定位技术。它的特点非常突出,就是精度高、速度快、使用成本低。

640?wx_fmt=jpeg

大家所熟知的美国的全球定位系统(GPS)、中国的北斗(BDS)、欧洲的伽利略(Galileo)、俄罗斯的格洛纳斯(GLONASS),都是卫星定位系统。
基站定位的原理和雷达有相似之处。雷达定位大家都知道,就是发射雷达波,根据目标的反射,进行空间位置测算。

640?wx_fmt=gif

基站定位的话,基站就相当于是一个“雷达”。
通常,在城市中,一部手机会在多个基站的信号覆盖之下。手机会对不同基站的下行导频信号进行“测量”,得到各个基站的信号TOA(到达时刻)或TDOA(到达时间差)。根据这个测量结果,结合基站的坐标,就能够计算出手机的坐标值。

画个图,一看就明白了:

640?wx_fmt=jpeg

所有上述这些定位手段,都有一个明显的缺点,就是无法穿透建筑物,不能实现室内定位。
卫星定位,需要接收机接收到足够的卫星信号。当进入室内,或有遮挡时,卫星信号很微弱,无法有效定位。
640?wx_fmt=jpeg
640?wx_fmt=jpeg
上图为手机在室外接收到的GPS定位信号
下图为手机在室内接收到的GPS定位信号

从图示可以看出,当发现的卫星数量降低时,定位误差从10米增加到66米。
一方面,卫星和基站定位技术无法满足室内定位的需求。另一方面,室内定位的业务场景却越来越多,例如地下车库导航、商场寻找店铺和商品,甚至儿童走失,都对室内定位有迫切需求。
在需求持续上升的背景下,人们开发了一系列技术,尝试利用其它类型的锚节点来提供定位能力。这就包括了Wi-Fi,蓝牙,UWB等技术。

     什么是UWB     

Wi-Fi和蓝牙大家都比较熟悉。那么,UWB又是什么?

UWB,就是Ultra Wideband,超宽带技术。它源于20世纪60年代兴起的脉冲通信技术。

了解通信的同学都知道,一般的通信体制都是利用一个高频载波来调制一个窄带信号,通信信号的实际占用带宽并不高。
而UWB不同于传统的通信技术,它通过发送和接收具有纳秒或微秒级以下的极窄脉冲来实现无线传输的。由于脉冲时间宽度极短,因此可以实现频谱上的超宽带:使用的带宽在500MHz以上。

640?wx_fmt=jpeg

FCC(美国联邦通信委员会)为UWB分配了 3.1~10.6 GHz共 7.5 GHz频带,还对其辐射功率做出了比FCC Part15.209更为严格的限制,将其限定-41.3dBm频带内。

640?wx_fmt=jpeg

简而言之,这项技术通过超大带宽和低发射功率,实现低功耗水平上的快速数据传输。
由于UWB脉冲的时间宽度极短,因此也可以采用高精度定时来进行距离测算。

相比Wi-Fi和蓝牙定位技术,UWB具有如下优势:
1)抗多径能力强,定位精度高:带宽决定了信号在多径环境下的距离分辨能力(成正比关系)。UWB的带宽很宽,多径分辨能力强,能够分辨并剔除大部分多径干扰信号的影响,得到精度很高的定位结果。UWB可以在距离分辨能力上高于其他传统系统,复杂环境下其精度甚至可以达到Wi-Fi、蓝牙等传统系统的百倍以上。
2)时间戳精度高:超宽带脉冲信号的带宽在纳秒级,由定时来计算位置时,引入的误差通常小于几厘米。
3)电磁兼容性强:UWB 的发射功率低,信号带宽宽,能够很好地隐蔽在其它类型信号和环境噪声之中,传统的接收机无法识别和接收,必须采用与发射端一致的扩频码脉冲序列才能进行解调,所以不会对其他通信业务造成干扰,同时也能够避免其他通信设备对其造成干扰。
4)能效较高:UWB具有500MHz以上的射频带宽,能够提供极大的扩频增益,使得UWB通信系统能效较高。这意味着对于电池供电设备,系统的工作时间可以大大延长,或是同样发射功率限制下,覆盖范围比传统技术大得多。通常在短距离应用中,UWB发射机的发射功率普遍低于1mW;在长距离应用中,不需要额外的功率放大器即可达到200米的距离,同时实现6.8Mbps的空中速率。
基于上述技术优势,采用UWB能够构成高精度的室内定位系统。

640?wx_fmt=jpeg
UWB和其它定位技术的对比

目前,常用的UWB测距方法有三种,分别是:
(1)TOF(Time of flight):通过测量UWB信号在基站与标签之间飞行的时间来实现测距。
(2)TDOA(Time Difference of Arrival):利用UWB信号由标签到达各个基站的时间差来进行定位。
(3)PDOA(Phase Difference Of Arrival):利用到达角相位来测量基站与标签之间方位关系。

限于篇幅,我们将在后续详细介绍UWB的算法原理。

     UWB的产业发展     

在2002年以前,UWB被广泛用于军事方面的用途。2002年,FCC(美国联邦通信委员会)对UWB做了如前文所说的功率上的严格限制,才将UWB技术解禁,准许进入民用领域。
此后,UWB技术进入了高速发展期,各种技术方案围绕着UWB国际标准的制定也展开了激烈的竞争。
2007年,IEEE在802.15.4a标准中对UWB技术进行了标准化。经过近十年的发展,UWB的标准也在不断完善。

说到UWB的产业链,就不得不提到Decawave公司。

640?wx_fmt=jpeg

Decawave是目前已知唯一支持IEEE 802.15.4的UWB定位芯片厂商。他们提供低成本的芯片出售,零售价格在几美元。芯片型号是DW1000,符合IEEE 802.15.4-2011 UWB标准协议(在理想条件下,最大可测量范围为300m)。

640?wx_fmt=jpeg
DW1000芯片

在苹果公司的产品发布会后,基于Decawave芯片DW1000的定位厂商INTRANAV连发两条推特,声称其套件支持与iPhone11的互操作,Decawave也转发了该推特。这说明,苹果U1有极大的可能支持IEEE 802.15.4。

640?wx_fmt=jpeg

其它从事UWB技术研究的厂商还包括Ubisense、BeSpoon。

这些厂商使用了自己的UWB解决方案,通常以模组套件的形式推出,但均不支持IEEE 802.15.4。

要实现更好的空间感知,需要应用生态的支持。为了构建整个应用生态,不同厂家设备性需要实现互操作、互兼容。可以预见,未来所有厂家设备都将可能支持IEEE 802.15.4标准。

     UWB的定位效果     

为了客观评判不同的室内定位技术,多个国际组织一直在积极组织室内定位比赛。

目前国际上三个高规格的室内定位比赛包括:
1)微软室内定位比赛(Microsoft Indoor Localization Competition,MILC)
2)美国国家标准与技术研究院(NIST)举办的PerfLoc(Performance Evaluation of Smart-phone Indoor Localization Apps)
3)国际室内定位与室内导航大会(IPIN)室内定位比赛:IPIN competition

微软的MILC比赛被公认为评判高精度室内定位技术最好的舞台。

下面列出了历年MILC比赛中基于基础设施组前三名的成绩:

640?wx_fmt=jpeg

可以看出,从2015年开始,UWB的优势逐渐显示出来,已成为高精度定位技术中最有前景的技术。同时,Decawave的DW1000也是具体定位方案中的主流选择。8家获奖的UWB团队中,有7家都使用了DW1000。

640?wx_fmt=jpeg
2018年的比赛使用性能极高的激光SLAM构建地图(左图)并基于此实时输出真实位置轨迹(右图),由此作为比赛的评价依据
640?wx_fmt=jpeg
比赛场地在葡萄牙波尔图证卷交易所宫,现场环境十分复杂

2018年的比赛首次评价动态精度,比赛场地非常复杂,结果的导向性很强。
在这项赛事中,来自美国卡内基梅隆大学的Anthony Rowe团队值得一提。这个团队是室内定位领域的翘楚,三次进入前三名,2018年更是获得第一名和并列第二名。

640?wx_fmt=jpeg
CMU Anthony Rowe团队

更重要的是,2018年该团队取得第一名的技术路线是UWB+增强现实(AR),而iPhone 11 Pro则成为了首款同时支持AR和UWB的手机。这足以证明该团队具有极强的技术洞察力。

此外,来自中国的南京爱锑奕电子科技有限公司也非常值得关注。

他们是一个新兴团队,切入UWB市场一年后就参加了2018年的比赛,取得了并列第二名的成绩。这是迄今为止国内队伍在该项赛事中的最好成绩。

640?wx_fmt=jpeg

上图是南京爱锑奕团队在比赛中输出的实时轨迹。可以看到,除少部分区域外,大部分区域都输出了精度很高的定位坐标。蓝色为激光SLAM实时轨迹,绿色点为爱锑奕团队输出的轨迹,红色为矢量误差。

640?wx_fmt=jpeg

上图是参加各支队伍的平均定位误差对比。爱锑奕团队的平均定位误差是0.4米,而几个传统强队,如RaceLogic、俄罗斯研究院等同样使用UWB技术,却只取得了接近1米甚至更差的成绩,这充分说明了2018年比赛难度之大。

      结  语     

总而言之,这次新款iPhone对UWB的全面支持,对UWB技术的规模化商用推广是一次非常宝贵的机会。这也将加速UWB上下游产业链的发展和成熟。

随着5G的到来,我们正在加速走向万物互联时代,越来越多的物联网设备和应用将会出现。UWB技术可以根据自身的特点,与这些物联网场景紧密结合,给用户提供更好的服务体验。

包括智能家居、增强现实、移动支付、看护跟踪、地质勘探、室内导航,都将是UWB技术的用武之地,拥有非常广阔的发展前景。根据相关机构的预测,未来UWB技术将在室内定位市场中占据30%~40%的市场份额,2022年市场规模将有望达到164亿美元。
UWB的美好未来,让我们拭目以待!


《崛起的超级智能》一书主要阐述当今天人类为人工智能的春天到来而兴奋,为人工智能是否超越人类而恐慌的时候,一个更为庞大、远超人类预期的智能形态正在崛起,种种迹象表明50年来,互联网正在从网状结构进化成为类脑模型,数十亿人类智慧与数百亿机器智能通过互联网大脑结构,正在形成自然界前所未有的超级智能形式。这个新的超级智能的崛起正在对人类的科技,产业、经济,军事,国家竞争产生重要而深远的影响。

作者:刘锋   推荐专家:张亚勤、刘慈欣、周鸿祎、王飞跃、约翰、翰兹

未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/490227.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LeetCode——1954. 收集足够苹果的最小花园周长

通过万岁!!! 题目:这个题目比较复杂,就是给你一个坐标轴,然后让你以0,0为中心选择一个边长为整数的正方形,使得正方形中所有点坐标的绝对值之和要大于给定的neededApples。但是我们需要输出的是…

【人工智能】清华大学张钹院士:人工智能技术已进入第三代

来源:经济观察报近日,中科院院士、清华大学人工智能研究院院长张钹教授接受记者采访时认为,目前基于深度学习的人工智能在技术上已经触及天花板。从长远来看,必须得走人类智能这条路,最终要发展人机协同,人…

莫侵残日噪,正在异乡听

莫侵残日噪,正在异乡听 闷热的傍晚,出来转转,身体被热流裹着,随手抓拍一张,撤! 转载于:https://www.cnblogs.com/xxldannyboy/p/5719460.html

threadlocal get为空_面试常见知识点:ThreadLocal

老套路,先列举下关于ThreadLocal常见的疑问,希望可以通过这篇学习笔记来解决这几个问题:ThreadLocal是用来解决什么问题的?如何使用ThreadLocal?ThreadLocal的实现原理是什么?可否举几个实际项目中使用Thre…

行业观察 | 新一轮AI周期里,华为拿什么破解核心难题?

来源:财经杂志第三方研究机构OpenAI近期发布的研究显示,仅2012年以来,人们对于算力的需求增长六年就超过30万倍,平均每年增长10倍,远超摩尔定律的发展速度。面对AI算力需求的爆发式增长,华为作为AI的后入局…

swot分析法案例_(附数据集)SWOT分析实战案例!

最近一直在为一件事苦恼,开在市中心的那家西点店的生意越做越好,分店也开了两家,但挣得这点钱还是不够买房子。这不,最近看上了这如火如荼的奶茶市场,想借现有资源开一家奶茶店,但不知道这个想法靠不靠谱&a…

人工智能、核聚变、碳捕捉……最有可能帮助拯救地球的10项技术

来源: 资本实验室亚马逊森林大火、加速消逝的北极冰面、有记录以来最热的7月、越来越多的极端天气事件……各种因素正在让地球、让我们的生存环境经受日趋严重的考验。大问题往往意味着大机会。在人类对环境制造麻烦的过程中,势必又不断催生出各种新技术…

点击按钮弹出iframe_WEB安全(四) :CSRF与点击劫持

跨站点请求伪造CSRF是跨站点请求伪造,它的请求有两个关键点,跨站点的请求与请求是伪造的,从字面上看,跨站点的请求来源应该是其他站点,比如,目标网站接收到来源网站的恶意操作,但是,…

两种超级智能,哪一个对人类未来影响更为深远?

来源:刘锋科学网博客前言:无论在学术界还是产业界,超级智能并没有被纳入正式的体系概念中,因此超级智能究竟是什么,也没有统一的的定义,事实上在过去的时间里,出现了两种不同的超级智能概念&…

Java9都快发布了,Java8的十大新特性你了解多少呢?

Java 9预计将于今年9月份发布,这是否会是一次里程碑式的版本,我们拭目以待。今天,我们先来复习一下2014年发布的Java 8的十大新特性。 Java 8可谓是自Java 5以来最具革命性的版本了,她在语言、编译器、类库、开发工具以及Java虚拟…

struts2 redirect 获取参数null_社会化登录支持授权域以便于获取更大权限

使用 Authing 可以轻松接入许多社会化登录,同时无需翻看社会化登录提供方的繁琐接入文档,让开发者更加专注业务从而提升开发效率。这看起来很方便,But,通过 Authing 登录的社会化登录用户,无法获取更高级的权限&#x…

美国科技界高度关注中国科技创新进展

来源:新华网近日,美国《福布斯》双周刊网站刊文说,中国互联网和高科技企业已超越模仿时代,成为投资和研发的全球领先者,中国的科技巨头进入了全新的创新时代。记者在采访中发现,美国科技界高度关注中国科技…

科技创新2030—“新一代人工智能”重大项目拟立项的2018年度项目公示清单

来源:财政资金申请根据《国务院关于改进加强中央财政科研项目和资金管理的若干意见》(国发[2014]11号)、《国务院关于深化中央财政科技计划(专项、基金等)管理改革方案的通知》(国发[2014]64号)…

SpringMVC核心——视图渲染(包含视图解析)问题

一、本来想说的是返回值处理问题,但在 SpringMVC 中,返回值处理问题的核心就是视图渲染。所以这里标题叫视图渲染问题。 本来想在上一篇文章中对视图解析进行说明的,但是通过源码发现,它应该算到视图渲染中,所以在这篇…

国际机器人联合会:全球工业机器人2019报告

来源:资本实验室据国际机器人联合会(IFR)最新发布的《全球机器人2019——工业机器人》报告数据,2018年全球工业机器人出货量42.2万台,比上年增长6%;年销售额达到165亿美元,创下新纪录。 IFR预测…

mediarecorder添加时间戳_Python脚本实现数据处理(官方实例)和Hive自带时间函数...

官网示例官网地址:https://cwiki.apache.org/confluence/display/Hive/GettingStarted#GettingStarted-ApacheWeblogData下载数据wget http://files.grouplens.org/datasets/movielens/ml-100k.zip我们下载好数据安装unzip yum install -y unzip解压数据创建库创建表…

从空城计到阿尔法狗,博弈论如何渗透我们的生活?

来源:返朴2016年,有那么一只“狗”大闹天宫,这在整个人类社会引起了轩然大波。它就是阿尔法狗(AlphaGo),是谷歌(Google)旗下公司DeepMind 在人工智能与博弈论交叉研究上的一个杰作。…

反弹式木马原理_汽车避震器的原理与改装问题

一、避震器or避振器“震”字是指车轮在路面的滚动过程中,由于路面的不平,从路面传递上来的震动,而不是人为制造“振”动,所以使用“震”字更科学。二、避震器的工作原理避震器的工作原理是通过活塞运动产生阻尼力,将动…

科学探索奖首批50名获奖者都有谁?

来源:知识分子9月20日上午,经过四个多月的评审,2019年 获奖名单正式公布。来自全国26个科研单位、高校和企业的50位科学家成为首届“科学探索奖”获奖者,每人将在未来5年获得由腾讯基金会资助的300万元人民币。据悉,20…

untitled软件怎么用_苹果手机怎么用4G网络于App Store下载超过200MB以上的软件

近两年来,随着苹果中国市场份额被国产品牌挤占了不少,他们越来越懂得“聆听”中国用家的需要,其中一项便是用手机网络(4G)下载iOS应用。在这一点上我们中国人也不用再妄自菲薄了,在疯狂的4G建网以后,我们国家已经拥有全…