汽车芯片科普


来源:湖杉资本

智能驾驶涉及人机交互、视觉处理、智能决策等,核心是 AI 算法和芯片。伴随汽车电子化提速,汽车半导体加速成长,2017 年全球市场规模 288 亿美元(+26%),远高于整车销量增速(+3%),其中占比最高的为功能芯片 MCU(66 亿美元,占比 23%),随后还包括功率半导体(21%)、传感器(13%)等。

汽车半导体按种类可分为功能芯片 MCU(Microcontroller Unit)、功率半导体(IGBT、MOSFET 等)、传感器及其他。根据Strategy Analytics,在传统燃油汽车中,MCU 价值量占比最高,为23%;在纯电动车中,MCU 占比仅次于功率半导体,为11%。DIGITIMES预测,功能芯片MCU市场规模有望从2017年66亿美元稳步提升至2020年72亿美元。

▲ 全球汽车销量(万辆)

▲ 全球汽车半导体市场规模(亿美元)

▲ 燃油汽车半导体按种类分类

▲ 纯电动汽车半导体按种类分类

▲ 汽车功能芯片市场规模(亿美元)

传统汽车的功能芯片仅适用于发动机控制、电池管理等局部功能无法满足高数据量的智能驾驶相关运算。

近年来,伴随智能驾驶渗透率提升,全球芯片巨头纷纷进军汽车产业,推出具备AI计算能力的主控芯片。主控芯片市场规模有望快速成长,IHS预测2020年可达40亿美元。

▲ 汽车芯片:主控芯片&功能芯片

▲ 汽车主控芯片市场规模(亿美元)

主控芯片巨头具有较强的AI计算优势,功能芯片厂商具有丰富的汽车产业链经验,两大阵营之间兼并收购及联盟合作频发。

截至目前,英伟达已与全球370+整车厂、一级供应商达成合作;英特尔收购Mobileye切入汽车产业;高通曾意图收购恩智浦等。

▲ 汽车芯片市场格局

主控芯片:算力持续增长

智能驾驶涉及人机交互、视觉处理、智能决策等,AI算法和芯片是核心。据恩智浦统计,目前一辆高端汽车已经搭载超过1亿行代码,远超飞机、手机、互联网软件等,未来伴随自动驾驶的渗透率及级别提升,汽车搭载的代码行数将呈现指数级增长。

自动驾驶软件计算量已经达到10个TOPS(Tera Operations Per Second,万亿次操作每秒)量级。传统汽车MCU的算力难以满足自动驾驶汽车的计算要求,GPU、FPGA、ASIC等AI芯片进入汽车市场。

▲ 汽车已经搭载超过1亿行代码

▲ 汽车搭载的代码行数指数级增长

▲ 典型汽车MCU的算力

▲ 英伟达GPU SoC的算力

全球无人驾驶领导者包括谷歌、百度、特斯拉、奥迪等,从这些厂商的自动驾驶主控模块的SoC芯片架构或可一窥汽车芯片发展方向。

谷歌 Waymo:采用英特尔CPU+Altera FPGA方案,英飞凌MCU作为通信接口。谷歌Waymo的计算平台采用英特尔Xeon12核以上CPU,搭配Altera的Arria系列FPGA,并采用英飞凌的Aurix系列MCU作为CAN或FlexRay网络的通信接口 。

▲ 谷歌Waymo的计算平台架构

百度 Apollo:恩智浦/英飞凌/瑞萨MCU+赛灵思 FPGA/英伟达GPU。百度无人驾驶样车采用 IPC(工控机)方案,但工控机的体积和功耗难以满足量产化要求,因而百度也推出了适合于量产的域控制器嵌入式方案。将各个传感器的原始数据接入到Sensor Box中,在Sensor Box中完成数据的融合,再将融合后的数据传输到计算平台上进行自动驾驶算法处理。

百度自动驾驶专用计算平台ACU(Apollo Computing Unit)定义了三个系列产品:MLOC(高精定位,MCU)、MLOP(高精定位+环境感知,MCU+FPGA)、MLOP2(高精定位+环境感知+决策规划,MCU+GPU)。

▲ 百度Apollo的工控机计算平台架构

▲ 百度Apollo的域控制器计算平台架构

特斯拉:从Mobileye ASIC到英伟达GPU。2014 年特斯拉发布Autopilot 1.0,搭载1个前置摄像头、1个后置倒车摄像头(不参与辅助驾驶)、1个前置雷达、12个超声波传感器,视觉芯片采用MobileyeEyeQ3,主控芯片采用NVIDIA Tegra 3。

2016年底特斯拉发布Autopilot 2.0,搭载3个前置摄像头(不同视角广角、长焦、中等)、4个侧边摄像头(左前、右前、左后、右后)、1个后置摄像头、1个前置雷达(增强版)、12个超声波传感器(传感距离增加一倍),主控芯片采用NVIDIADrive PX 2,处理速度为Autopilot 1.0的40倍。

▲ Mobileye EyeQ3芯片架构

▲ 英伟达Drive PX2芯片架构

奥迪:Mobileye ASIC英伟达GPU+Altera FPGA+英飞凌MCU的多芯片集成方案。全新奥迪A8公开了自己的zFAS控制器方案。zFAS共有四块高性能的处理器:1)Mobileye的EyeQ3负责视觉信息处理,包括交通标志识别、行人识别、碰撞提醒、车道线检测等;2)英伟达的Tegra K1 SoC负责360°环视影像;3)Altera的Cyclone5 FPGA负责传感器融合、地图融合、辅助泊车等;4)英飞凌的Aurix系列MCU用于交通拥堵控制、辅助驾驶等。

▲ 奥迪A8的计算平台架构

在汽车主控芯片领域,GPU仍将保持通用汽车主控芯片的主流地位,FPGA作为有效补充,ASIC将成终极方向。

当前人工智能及智能驾驶算法尚未定型,GPU作为通用加速器,预计仍将在相当长一段时间内保持其汽车主控芯片的主流地位;FPGA作为硬件加速器,料将成为GPU的有效补充;将来如果全部或部分智能驾驶算法得以固化,ASIC将成为最优性价比的终极选择。

▲ 汽车主控芯片趋势图

1、英伟达:GPU垄断优势,从智能座舱到自动驾驶

英伟达收入净利润快速增长,汽车为长期动力。英伟达是GPU领域龙头,常年保持超70%市占率。英伟达2018财年(对应2017自然年)收入97.1亿美元,同比+40.6%;净利润30.5亿美元,同比+82.9%。

▲ 全球独显GPU市场份额(2009-2017)

▲ 英伟达营业收入(百万美元)

▲ 英伟达净利润(百万美元)

英伟达数字座舱计算机Drive CX:利用先进3D导航、高分辨率数字仪表组、自然语音处理及图像处理实现驾驶辅助功能。Drive CX的内核是基于Maxwell架构的Tegra X1 SoC,此外还有选配置为Tegra K1 SoC。

DRIVE CX的主要功能包括:1)自然语言处理,通过语音识别完成地址查询、呼叫联系人等功能;2)3D导航和信息娱乐,为众多应用程序提供高分辨率、高帧率的图形显示;3)全数字仪表组,通过仪表组或抬头显示HUD提供丰富的图形显示;4)环绕视觉,利用复杂的运动恢复结构技术和先进的拼接技术,改善鱼眼镜头的图像渲染、减少重影现象,并可在高精细模型中渲染出一辆虚拟汽车,实现逼真的环绕视觉效果;5)对接Android Auto,拥有Android智能手机或iPhone的驾驶员可以轻松访问自己的移动设备,与地图、搜索和音乐等应用进行互动。

▲ 英伟达数字座舱计算机Drive CX

英伟达自动驾驶汽车平台Drive PX:将深度学习、传感器融合和环绕视觉相结合,力求改变驾驶体验。Drive PX的主要功能包括:1)传感器融合,可以融合来自12个摄像头、激光雷达、毫米波雷达和超声波传感器的数据;2)计算机视觉和深度神经网络,适用于运行DNN(Deep Neural Network,深度神经网络)模型,可实现智能检测和跟踪;3)端到端高清制图,可快速创建并不断更新高清地图;4)软件开发工具包DriveWorks,包含了可供参考的应用程序、工具和库模块。

▲ 英伟达自动驾驶汽车开发平台Drive PX

2、英特尔:积极兼并收购,进军自动驾驶专用芯片

英特尔传统业务增长乏力,进军汽车领域创造业绩新增长点。英特尔曾经是世界上最大的半导体芯片制造商。

据PassMark统计,2017Q1英特尔占据全球CPU行业的市场份额为80%。近年随着智能手机的兴起与个人电脑市场的景气降低,芯片主业收入增速明显下降,公司营业收入被三星电子超越。公司曾尝试生产了手机处理器但最后表现失利,并不得不解散了负责该业务的部门。

近年来,英特尔通过大量收购积极布局无人驾驶、物联网、人工智能、VR等新兴领域,创造业绩的新增长点,力图实现从传统芯片制造商向多元解决方案提供商转型。

▲ 全球CPU市场份额(2004-2017)

▲ 英特尔营业收入(百万美元)

▲ 英特尔净利润(百万美元)

▲ 英特尔按业务类别拆分营业收入(百万美元)

▲ 英特尔近三年收购动向

英特尔收购Mobileye:全球视觉ADAS领导者。Mobileye是全球视觉ADAS市场领导者之一,掌握ADAS市场80%份额,拥有丰富的视觉ADAS产品。Mobileye的专有软件算法和EyeQ芯片能对视觉信息进行详细分析并预测与其他车辆、行人、自行车或其他障碍物的可能碰撞,还能够检测道路标记、交通标志和交通信号灯。

截至2017年底,Mobileye的产品已经被用于27个整车厂的313款车型,当年出货量870万颗。2017年3月英特尔以153亿美元收购Mobileye,打造英特尔车队。车队将包括各种汽车品牌和车型,以展示其多功能性和适应性。L4级车辆将被部署在美国、以色列和欧洲进行测试。

▲ Mobileye EyeQ5将助力汽车实现L4-L5级无人驾驶

▲ 英特尔的“车到云”系统方案

英特尔收购Altera:自动驾驶FPGA芯片已经量产。目前全球FPGA市场主要被Xilinx和Altera瓜分,合计占有近90%的市场份额,合计专利达到6000多项。

Altera的FPGA产品共有四大系列,分别是顶配的Stratix系列(近万美元)、成本与性能平衡的Arria系列(2000~5000美元)、廉价的Cyclone系列(10~20美元)、以及MAX系列CPLD。英特尔2015年宣布完成对Altera的收购,帮助高速增长的数据中心与IoT业务。

▲ 2016年FPGA市场份额分布

3、高通:凭借通信优势,从信息娱乐到车联网

高通传统业务收入下滑,积极进行新兴产业布局。高通为全球智能手机SoC龙头。

在汽车领域,高通提供的解决方案包括:1)车载资讯系统,为汽车优化制定的蜂窝网解决方案;2)驾驶数据平台,智能收集和分析来自不同汽车传感器的数据,使汽车实现精准定位,监控和学习驾驶模式,感知周围环境,已经准确与外界共享此平台的信息;3)资讯娱乐,提供3D导航、在线媒体播放和驻车辅助支持,以及语音、人脸和终端识别等功能;4)电动汽车无线充电,推出Qualcomm Halo WEVC无线充电解决方案。

▲ 全球智能手机SoC市场份额(2016-2017)

▲ 高通营业收入(百万美元)

▲ 高通净利润(百万美元)

▲ 高通的新兴产业布局

高通推出车载信息娱乐系统解决方案。骁龙汽车平台信息娱乐系统现分为极简(Select)、高端(High)和顶级(Premium)方案。

极简方案可以支持3个显示屏,包括信息娱乐系统、仪表和抬头显示(HUD);高端层级可以支持多达4个显示屏,副驾驶或后座娱乐可以拥有单独的屏幕,同时还支持顶级音频、低时延无线传输高清视频、环视处理,深度学习与计算机视觉处理可分辨附近的障碍物和行人;顶级方案可以支持多达6个显示屏,包括仪表、信息娱乐系统、HUD、副驾驶、后座(两个不同的屏幕)。

2017年CES展上,参展的玛莎拉蒂硬件上搭载定制的骁龙汽车解决方案,包括骁龙汽车级处理器、Gobi3G/4G LTE无线调制解调器、Wi-Fi和蓝牙模块等。另一辆参展车克莱斯勒Portal,安装了松下车载娱乐概念系统,此系统将以最新版本的安卓汽车以及高通公司骁龙芯片为工作基础 。

▲ 骁龙602A汽车处理器

高通推出车联网芯片组,支持LTE及DSRC车联网骁。骁龙X5 LTE支持LTE车联网,速度可达4类,下行速率为150Mbps,上行速度为50Mbps。骁龙 X12 LTE支持速度高10类,支持下行速率高达60 MHz 3x CA(450Mbps)到网络上行链路中的 40MHz 2x CA(100Mbps)。

骁龙X16 LTE调制解调器支持高达1Gbps的峰值下载速度,有助于满足下一代智能网联汽车的连接需求和使用案例,包括高清地图更新、实时交通和路况信息的连接导航、软件升级、Wi-Fi热点和多媒体流。

此外,高通于2017年9月推出了基于第三代合作伙伴计划(3GPP)版本14规范的全球首款蜂窝车到车(C-V2X)商用解决方案,高通9150 C-V2X 芯片组。该芯片组包括运行智能交通系统(ITS)V2X 堆栈的应用处理器以及硬件安全模块(HSM),预计在2018年下半年上市,最早于 2019 年实现量产并向车厂供货。C-V2X同时支持 DSRC和LTE通信,为车辆提供周围环境信息、非视距(NLOS)场景下的信息。

功能芯片:技术较成熟,格局稳中有变

功能芯片市场较为成熟、格局较为稳定。据Strategy Analytics统计,2016年全球车载MCU安装量超25亿,平均每辆汽车安装25~30个 MCU。2016年全球汽车MCU市场TOP5分别为恩智浦(14%)、英飞凌(11%)、瑞萨电子(10%)、意法半导体(8%)、德州仪器(7%)。

相比于消费芯片及一般工业芯片,汽车芯片的工作环境更为恶劣:温度范围可宽至-40~155℃、高振动、多粉尘、电磁干扰等。由于涉及人身安全问题,汽车芯片对于可靠性及安全性的要求也更高,一般设计寿命为15年或20万公里。“车规级”芯片需要经过严苛 的认证流程,包括可靠性标准 AEC-Q100、质量管理标准ISO/TS 16949、功能安全标准ISO26262等。

一款芯片一般需要2~3年时间完成车规认证并进入整车厂供应链;而一旦进入之后,一般也能拥有长达5-10年的供货周期。高安全与高可靠性标准、长供货周期、与中下游零部件厂商和整车厂长久的合作关系是目前汽车芯片格局稳定的主要原因。

▲ 汽车级芯片 vs 消费类、工业级芯片

▲ 全球主要汽车MCU公司概况

▲ 典型汽车MCU的算力

▲ 2016年全球汽车MCU市场份额

功能芯片市场格局亦存变数:1)传统功能芯片厂商在保持原有份额的基础上,积极拓展主控芯片,如恩智浦Bluebox、英飞凌Aurix、瑞萨R-Car等;2)功能芯片厂商之间通过兼并收购整合优势,如恩智浦收购飞思卡尔、英飞凌意图收购意法半导体等;3)半导体巨头亦希望通过收购功能芯片厂商获取车载技术及渠道经验,如英特尔收购Mobileye,高通曾意图收购恩智浦等。

恩智浦:提供完整汽车半导体解决方案,Bluebox 平台支持L4级自动驾驶。

汽车电子布局:恩智浦汽车半导体产品覆盖MCU和MPU、车载网络、媒体和音频处理、智能电源驱动器、能源与电源管理、传感器、系统基础芯片、驾驶员辅助收发器、汽车安全等。

自动驾驶平台:恩智浦BlueBox是一款自动驾驶开发平台,集成了S32V234汽车视觉和传感器融合处理器、S2084A嵌入式计算处理器、S32R27雷达微控制器。BlueBox可完成多传感器融合(毫米波雷达、视觉、激光雷达、车联网),支撑 L4级自动驾驶,功耗小于40W,算力达90,000 DMIPS(Dhrystone Million Instructions executed Per Second,百万条指令每秒)。

视觉芯片:S32V234视觉处理器,拥有CPU(4颗ARM CortexA53和1颗M4)、3D GPU(Vivante GC3000)和视觉加速单元(2颗APEX-2vision accelerator),支持4路摄像头。可用于前视摄像头、后视摄像头、环视系统、传感器融合系统等,能实时3D建模,计算能力为50GFLOPs。同时,S32V234芯片预留了支持毫米波雷达、激光雷达、超声波的接口,可实现多传感器数据融合,最高可支持ISO26262ASIL-C标准。

雷达芯片:S32R27雷达处理器,采用两个e200z7 32位 CPU 和两个32位锁步模式e200z4,能够支持自适应巡航控制、智能大灯控制、车道偏离警告和盲点探测等功能。

▲ 恩智浦营业收入(百万美元)

▲ 恩智浦净利润(百万美元)

▲ 恩智浦Bluebox自动驾驶开发平台

英飞凌:覆盖集成电路与功率半导体,视觉及雷达芯片支持 ADAS 功能。

汽车电子布局:英飞凌汽车半导体产品覆盖车身半导体、汽车安全、底盘总成、动力总成、混合动力汽车和电动车、有源天线等。

自动驾驶平台:英飞凌推出Aurix自动驾驶域控制器,可完成传感器信号融合(雷达、摄像头、超声波和激光雷达)、计算最佳驾驶策略,并触发汽车中的执行器,支持增强型ADAS功能,如交通辅助、自主避障等。

视觉芯片:可实现车道偏离预警、前向碰撞预警、交通标志识别、行人识别等ADAS功能。

雷达芯片:1)77GHz远程雷达系统,采用 SiGe(硅锗)技术保证高频功能和耐用性,可用于避撞系统;2)24GHz近/中程雷达系统,同样采用SiGe(硅锗)技术,可用于盲点监测系统。

车内3D摄像头芯片:英飞凌推出3D图像传感器芯片Real3系列产品,采用飞行时间(ToF)相机测量3D环境,可识别驾驶员行为并将此信息传递给ADAS,还可以提升HMI体验如手势识别等 。

▲ 英飞凌营业收入(百万欧元)

▲ 英飞凌净利润(百万欧元)

▲ 英飞凌Aurix自动驾驶控制器架构图

瑞萨:多品类车载MCU和SoC,R-Car平台支持L4级自动驾驶。

汽车电子布局:瑞萨汽车半导体产品覆盖片上系统(SoC)、电源管理、电池管理、功率器件、通信器件、视频和显示等。

自动驾驶平台:瑞萨推出自动驾驶SoC R-Car,采用ARM CPU和PowerVR GPU,可扩展的硬件平台可覆盖入门级(R-Car E系列)、中级(R-Car M系列)及高级(R-Car H系列),支持多种开源软件(安卓、QNX、Linux、Windows、Genivi等)。此外,还有车外摄像头芯片(R-Car V系列)、车内摄像头芯片(R-Car T系列)、智能座舱芯片(R-Car D系列)、车联网芯片(R-Car W系列)等。

▲ 瑞萨营业收入(亿日元)

▲ 瑞萨净利润(亿日元)

▲ 瑞萨R-Car硬件及软件平台

意法半导体:安全主导的半导体制造商,ADAS产品覆盖视觉、雷达、车联网。

汽车电子布局:意法半导体的汽车半导体产品覆盖高级辅助驾驶系统ADAS、车身舒适系统、底盘和安全系统、新能源汽车、娱乐系统、移动服务、动力系统、通信和网络等。

视觉芯片:可用于前视、后视、侧视、以及车内摄像头的信号处理。此外,意法半导体与Mobileye合作开发EyeQ系列芯片,负责芯片制造技术、专用存储器、高速接口电路和系统封装设计,以及总体安全架构设计。

雷达芯片:1)77GHz远程雷达系统,STRADA770 单芯片收发器,可覆盖76-81GHz,可用于自适应巡航ACC、自动制动AEB、碰撞预警FCW、换道辅助LCA、行人检测PD等功能;2)24GHz短程雷达系统,STRADA431芯片,包含一个发射器和三个接收器,适用于盲区检测BSD、换道辅助LCA、泊车辅助PA、倒车侧方检测RCTA、碰撞缓解制动CMB等。

车联网芯片:基于DSRC的V2X解决方案,意法半导体和以色列V2X厂商Autotalks于2014年开始合作研发V2X芯片组。在2018CES上展出的V2X解决方案整合了意法半导体的Telemaco3车载信息服务平台和Autotalks的CRATON2芯片组。

▲ 意法半导体营业收入(百万美元)

▲ 意法半导体净利润(百万美元)

▲ 意法半导体ADAS系统

德州仪器:提供开放式ADAS SoC解决方案。

汽车电子布局:德州仪器的汽车半导体产品覆盖高级辅助驾驶系统ADAS、信息娱乐系统与仪表组、车身电子装置与照明、HEV/EV和动力系统等。

自动驾驶平台:德州仪器ADAS主要产品是TDAx系列,包括TDA2x、TDA3x、TDA2Eco三款SoC,基于异构硬件和通用软件架构,可提供可扩展的开放式ADA解决方案。TDA2x于2013年10月发布,主要面向中到中高级市场,配置了2颗ARM Cortex-A15内核与4颗Cortex-M4内核、2颗TI定浮点C66xDSP内核、4颗EVE视觉加速器核心,以及ImaginationSGX544GPU,主要应用于前置摄像头信息处理,包括车道报警、防撞检测、自适应巡航以及自动泊车系统等。

TDA3x于2014年10月发布,主要面向中到中低级市场,其缩减了包括双核A15 及SGX544GPU,主要应用在后置摄像头、2D或2.5D环视等,可支持车道线辅助、自适应巡航控制、交通标志识别、行人与物体检测、前方防碰撞预警和倒车防碰撞预警等多种ADAS算法。

传感器芯片:包括摄像头芯片(前视、后视、侧视、环视)、雷达芯片(远程、短程、多模式)、扫描激光雷达芯片、超声波芯片,以及传感器融合芯片等。

▲ 德州仪器营业收入(百万美元)

▲ 德州仪器净利润(百万美元)

▲ 德州仪器TDAx产品对比

小结

 汽车从“功能机”进化为“智能机”,从“汽车电子”到“无人驾驶”。战略看好智能驾驶产业链中汽车芯片为其中的核心元器件。

从全球范围看,布局汽车芯片产业的巨头公司包括:英伟达、英特尔、高通等;潜在的兼并收购标的包括:英飞凌等。国内公司从车载娱乐系统等安全等级要求较低的产品入手,有望逐渐从后装渗透至前装、从国产整车厂渗透至合资车厂。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/489095.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

hanoi塔java_Java实现hanoi塔

学习数据结构绕不过会遇到汉诺塔的问题,这个也比较经典,问题我也不详细描述了。简单来说三根木桩,初始状态下一根木桩上叠放着n个盘子,大盘在下小盘在上,任你操作,把这些盘子移动到第三根木桩,当…

信息太多,时间太少: 大脑如何区分重要和不重要的事?

来源:脑与心智毕生发展研究中心CLIMB我们总是会错过一些想看到、听到或感觉到的东西——尤其是当有大量信息争夺我们的注意时。是什么吸引了我们的注意?记住重要的事情需要多长时间?神经科学家(研究大脑和行为的科学家)发现,大脑的…

java 并发 set_高并发下的Java数据结构(List、Set、Map、Queue)

1.并发ListVector 或者 CopyOnWriteArrayList 是两个线程安全的List实现,ArrayList 不是线程安全的。因此,应该尽量避免在多线程环境中使用ArrayList。如果因为某些原因必须使用的,则需要使用Collections.synchronizedList(List list)进行包装…

知识图谱和图分析与可视化

来源:知链数据“知识图谱和图分析与可视化”这个题目看起来比较大,我尝试基于本人的一些图数据可视化与分析经验,对知识图谱和图分析与可视化之间的关系进行简单梳理,并分享一些以知识图谱为代表的图数据与图可视化、图分析结合进…

新一代人工智能专利分析

来源:三思派人工智能(Artificial Intelligence,AI)自诞生以来,已经过约60年的发展。2006年深度学习算法的重大突破带来了人工智能的第三次爆发。同时也引发专利申请的激增,2006年至2016年,十年的…

MYSQL性能优化详解(二)

接着上一篇学习:http://www.cnblogs.com/quanzhiguo/p/6401453.html 七、MySQL数据库Schema设计的性能优化 高效的模型设计 适度冗余-让Query尽两减少Join 大字段垂直分拆-summary表优化 大表水平分拆-基于类型的分拆优化 统计表-准实时优化 合适的数据类型 时间存储…

图解谷歌大脑丶城市大脑丶全球脑与互联网大脑的关系

人类很早就朦胧的发现社会组织具有神经系统的特征。19世纪到20世纪,一些前瞻的哲学家们开始不断将科技与脑进行了关联,提出了"器官映射","社会神经网络","全球脑"。 21世纪之后,更多科技大脑概念不断涌现,从互联网大脑到城市大脑,从谷…

滴滴自动驾驶CEO张博:十年内无人驾驶对消费者没有吸引力丨厚势汽车

来源:WAVE2019张博:在 2012 年滴滴创立的时候,我们是一个非常简单的想法。我们发现在打出租车的场景下,无论是司机还是乘客效率都非常低。在滴滴出现之前,一个乘客想要打出租车必须要下楼招一下手,这个信号…

garch预测 python_数据科学方面的Python库,实用!

作者:Python开发与大数据人工智能原文:公众号 Python开发与大数据人工智能Python是一种很棒的编程语言。事实上,它还是世界上发展最快的编程语言之一。它一次又一次证明了它在数据科学职位中的实用性。整个Python及其库的生态系统使其成为全世…

物联网中的推荐系统

来源:北京物联网智能技术应用协会作者 | Alexander Felfernig, Seda Polat Erdeniz编译 | CDA数据科学研究院Recommender systems in the Internet of Things1、背景介绍物联网是一种联网的基础架构,是物联网、互联网和语义学领域之间融合的结果&#xf…

pwm控制的基本原理_单片机PWM控制基本原理详解~

PWM是Pulse Width Modulation的缩写,它的中文名字是脉冲宽度调制,一种说法是它利用微处理器的数字输出来对模拟电路进行控制的一种有效的技术,其实就是使用数字信号达到一个模拟信号的效果。这是个什么概念呢?我们一步步来介绍。首…

关上Deepfake的潘多拉魔盒,RealAI推出深度伪造视频检测工具

诞生之初,Deepfake是一项有趣的图像处理技术,仅仅带来搞笑和娱乐视频,但殊不知,潘多拉魔盒就此被打开,催生出色情黑产、恶搞政客“操纵”民意,Deepfake正逐步进化为一种新型“病毒”,人类伦理道…

谷歌地图的全球森林监察系统,揭秘中国雾霾的惊天秘密!

来源:老牛时评谷歌公司最近推出的全新交互式地图——“全球森林监察”它可以实时显示全球森林的覆盖情况。该幅地图的数据来源有多个,其中包括了NASA的森林面积覆盖率的分析数据。于是我们选取了中国及中国周边的部分,看完后的感受只能是比悲…

qt显示rgba8888 如何改 frame_Qt开源作品17-IP地址输入控件

一、前言这个IP地址输入框控件,估计写烂了,网上随便一搜索,保证一大堆,估计也是因为这个控件太容易了,非常适合新手练手,一般的思路都是用4个qlineedit控件拼起来,然后每个输入框设置正则表达式…

web.xml文件头出错

原先将web.xml文件头设置为如下格式 <?xml version"1.0" encoding"UTF-8"?><web-app version"3.1" xmlns"http://xmlns.jcp.org/xml/ns/javaee" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance" xsi:sche…

Nature子刊超越诺贝尔经典理论:神经科学研究路漫漫...

科学家正在观察一台用于记录小鼠脑细胞活动的双光子显微镜。图片来源&#xff1a;艾伦研究所来源&#xff1a;中国生物技术网 北京时间12月17日&#xff0c;发表在《Nature Neuroscience》上一项针对小鼠视觉系统中近6万个神经元活动的新研究显示&#xff0c;要想了解大脑如何计…

偏见与人类大脑结构有关

来源&#xff1a;科技日报偏见是如何产生的&#xff1f;据英国《自然神经科学》16日发表的一项脑科学研究发现&#xff0c;内侧前额叶皮质后部&#xff08;pMFC&#xff09;会促进人类产生确认偏误。具体而言&#xff0c;对于那些不会让自己更加相信已有观念的意见&#xff0c;…

PLECS软件学习使用(一)简单的RLC电路搭建

PLECS软件学习使用&#xff08;一&#xff09;简单的RLC电路搭建 1相关操作总结&#xff1a; 旋转&#xff1a;CtrlR 翻转&#xff1a;CtrlF 从连线中引出线&#xff1a;Ctrl鼠标左键 设置元件参数&#xff1a;双击元件&#xff0c;进行设置&#xff0c;若要显示参数&#xff0…

《自然》公布年度十大杰出论文

来源&#xff1a;科技日报 英国《自然》杂志网站日前公布了2019年十大杰出论文&#xff0c;接近室温的超导体、精确编辑基因技术、海王星新卫星等纷纷入选。其中&#xff0c;中国研究占到两席&#xff0c;分别是来自复旦大学的亨廷顿舞蹈症新疗法&#xff0c;与中科院上海有机化…

中国电子信息工程科技发展十大趋势(2019)发布

来源&#xff1a;新浪科技17日&#xff0c;中国工程院信息与电子学部、中国信息与电子工程科技发展战略研究中心在中国工程院召开发布会&#xff0c;发布“中国电子信息工程科技发展十大趋势&#xff08;2019&#xff09;”。中国工程院副院长陈左宁院士表示&#xff0c;中国工…