MEMS传感器的未来在哪?

来源:MEMS技术

1  引言

陀螺是用于测量载体相对惯性空间旋转运动中运动角速度和角度的传感器,是运动控制、姿态监测、导航制导等领域的核心器件,在工业和国防领域具有广泛且重要的应用。陀螺从原理上可分为基于高速旋转刚体的定轴性与进动性工作的机械转子类陀螺、基于光的Sagnac效应的光学类陀螺、基于哥氏力效应的振动类陀螺、基于原子干涉的冷原子陀螺及基于原子自旋的核磁共振陀螺等。

其中,基于哥氏力效应的振动类陀螺寿命长、成本低,而且随着微机械加工技术的发展,逐步延伸到微机电系统(Micro Electro Mechanical Systems,MEMS)领域。MEMS振动陀螺具有体积小、功耗低、寿命长、成本低等突出特点,在移动载体、汽车、无人机等领域得到了广泛的应用。 

目前,已经问世的新型高性能MEMS陀螺主要包括微半球谐振陀螺、核磁共振微陀螺、四质量块MEMS陀螺和嵌套环MEMS陀螺等。其中,嵌套环MEMS陀螺(Disk Resonator Gyroscope,DRG)由波音公司和JPL实验室首次提出,该MEMS陀螺具有轴对称的谐振结构、较高的电容灵敏度、更好的加工鲁棒性的特点,因此具有较高的性能潜力。该陀螺采用较为成熟的平面微加工技术,在制造成本和可靠制造上更具优势,是目前最具有潜力的MEMS振动陀螺方案。 

本文主要围绕嵌套环MEMS陀螺的关键技术展开调研,分析讨论了国内外主要研究机构在嵌套环MEMS陀螺关键技术上的研究思路和进展,为后续嵌套环MEMS陀螺的研究提供参考和借鉴。

1 嵌套环MEMS陀螺的结构和工作原理 

嵌套环MEMS陀螺的敏感结构和工作模态如图1所示。敏感结构为陀螺的核心部分,主要由谐振结构和电极组成。谐振结构由多个同心薄壁圆环通过交叉分布的辐条相连,并连接到中心键合锚点上。

嵌套环MEMS陀螺拥有众多的电极,电极与谐振结构之间形成径向间隙构成电容,用于结构驱动和信号检测。嵌套环MEMS陀螺具有多个模态,随着模态阶数升高,陀螺频率增大且等效质量和品质因数减小,这不利于陀螺性能的提升。因此,嵌套环MEMS陀螺通常工作在二阶椭圆简并模态。在角速率工作模式下,陀螺在驱动轴方向保持横幅振动,当存在垂直面外方向的角速度输入时,陀螺会在检测轴方向产生位移。通过测量该位移的变化,即可得到陀螺角速度的大小。 

图1 嵌套环MEMS陀螺的敏感结构及工作模态 

2 嵌套环MEMS陀螺的发展现状 

自2003年波音公司和JPL实验室首次提出嵌套环MEMS陀螺后,该陀螺受到了极大的关注。经过十几年的发展,其在关键技术方面开展了诸多的研究并取得了很大的进展。

2.1敏感结构设计 

波音公司提出的嵌套环MEMS陀螺如图2(a)所示,其直径约8mm,环与环之间的间隙较大,可以用来设置内部电极用于驱动、检测或静电修调。该陀螺具有较大的等效质量和电容面积,采用深反应离子刻蚀技术进行加工。

为实现小型化嵌套环MEMS陀螺结构,美国Stanford大学的Kenny团队利用Epi-seal工艺制作了一种晶圆级封装的直径介于0.5mm~2mm的嵌套环MEMS谐振陀螺,如图2(b)所示。为增大电容面积,提升静电驱动和修调能力,该团队在小型化嵌套环MEMS陀螺内部设计了内置差分电极,同时将电极连接到封装盖帽上并通过硅导通柱从盖帽顶端导出,实现了低于1Pa的圆片级封装真空度,如图2(c)所示。 

图2 嵌套环MEMS陀螺敏感结构设计 

2.2品质因数提升技术 

品质因数是陀螺最重要的指标之一,直接决定了陀螺的性能水平。多家研究单位都进行了嵌套环MEMS陀螺品质因数提升技术的相关研究,主要改进手段为材料改进和结构优化。在材料改进方面,波音公司在硅基嵌套环MEMS陀螺的基础上进一步研制了基于石英玻璃的嵌套环陀螺,如图3(a)所示。

其预期目标是将硅基嵌套环MEMS陀螺的品质因数(80000)提升1~2个数量级(5000000),零偏不稳定性和角度随机游走提升1个数量级。在结构优化方面,美国Stanford大学的Kenny团队验证了嵌套环MEMS陀螺的主要阻尼为热弹性阻尼,并通过延长辐条长度、降低环与环之间的热传递,进而提升陀螺的品质因数,最高可达到180000,如图3(b)所示。

同时,国防科技大学提出通过优化环壁厚分布和质量刚度解耦来提升陀螺的品质因数,将嵌套环陀螺的品质因数提升到510000,如图3(c)和图3(d)所示。

图3 嵌套环MEMS陀螺品质因数提升技术研究 

2.3频率匹配技术 

频率匹配方案主要包括利用自身结构设计降低频率裂解、机械修调和静电修调3种方式。在结构设计方面,由于<100>硅片面内各向异性,利用这种硅片加工的嵌套环MEMS陀螺二阶模态之间自然存在很大的频率裂解。

为减小该频率裂解,美国Stanford大学的Kenny团队提出了改变辐条位置和宽度等4种方法来实现模态匹配,将<100>硅基嵌套环MEMS陀螺的加工后频率裂解从大于10kHz减小到了96Hz左右,如图4(a)所示。国防科技大学提出了一种蜂巢式拓扑优化结构,其加工鲁棒性和晶向误差导致的频率裂解优于传统嵌套环MEMS陀螺,如图4(b)所示。此外,苏州大学也提出了一种蛛网式谐振结构,利用仿真验证了其晶向误差导致的频率裂解优于传统嵌套环式谐振结构,如图4(c)所示。 

但上述所有结构的优化方法均只能对个别加工误差的影响进行抑制,无法实现对所有加工误差来源的控制,加工后的陀螺仍需要进行进一步修调。在机械修调方面,美国California大学Los Angeles分校(UCLA)利用在嵌套环MEMS陀螺辐条中心圆形凹坑中添加金球的方式实现了陀螺二阶模态和三阶模态的同步修调,频率裂解分别从14.1Hz到低于0.1Hz,从8.2Hz到1.2Hz。

如图4(d)所示。机械修调对精度控制的要求很高,但效率低下,且无法用于高真空封装后的陀螺修调,因此在使用中遇到很大的限制。静电修调利用静电负刚度效应实现了模态频率的改变,是目前主流的模态修调方法。 

 图4 嵌套环MEMS陀螺频率匹配技术研究 

以上的修调方法一般是开环修调,但是在温度、驱动电压等变化时,陀螺的频率将发生改变从而造成其频率不再匹配,因此实现闭环频率匹配非常重要。由于在嵌套环MEMS陀螺的控制系统中,正交误差需要被完全抑制,频率裂解很难从正交或同向信号中直接提取出观进行测量,因此闭环频率匹配很难实现。

AD公司提出了一种基于干扰法的闭环频率匹配技术,该技术在如图2(b)所示的美国 Stanford大学研制的小型化嵌套环MEMS陀螺上进行了验证,实现了半月零偏稳定性0.2(°)/h的水平,如图4(e)所示。但该方法严重限制了陀螺带宽,很难在低频高Q值陀螺上使用。 

2.4非线性效应与参数放大技术 

嵌套环MEMS陀螺一般采用静电电容驱动,与其他MEMS传感器相同,在振动位移较大时将产生机械非线性和静电非线性效应。非线性问题的本质是陀螺的动力学方程中出现了二阶或更高阶的刚度系数,非线性的出现限制了陀螺的最大位移,给陀螺的稳定控制造成了困难,同时非线性机理的研究也给陀螺性能提升提供了新的思路。

以美国Stanford大学小型化嵌套环MEMS陀螺为研究对象,美国California大学Davis分校通过控制陀螺闭环驱动相位使陀螺的振动位移超出分叉点幅值,达到陀螺初始间隙的3.8%,有效提升了陀螺的稳定性能,如图5(a)所示。该单位同时研究了嵌套环MEMS陀螺的参数放大技术,通过在检测轴添加参数泵,大大提升了检测轴的品质因数,进而提升了陀螺的机械灵敏度和标度因数,使陀螺零偏不稳定性从1.93(°)/h降低到1.15(°)/h,角度随机游走从0.145(°)/√h降低到0.034(°)/√h,如图5(b)所示。

同时,美国California大学Davis分校对嵌套环MEMS陀螺驱动轴和检测轴之间的自激参数放大效应及频率匹配对该效应的影响规律进行了相关研究,该效应可能为陀螺性能提升提供新方案,如图5(c)所示。 

图5 嵌套环MEMS陀螺速率非线性效应与参数放大技术研究

2.5零偏补偿技术

目前,提升嵌套环MEMS陀螺零偏补偿的方法主要有高精度温度控制和零偏自补偿技术。MEMS陀螺普遍容易受到外界温度变化的影响,控制陀螺的工作环境温度可以有效提升陀螺的稳定性和环境适应性。波音公司在其硅基嵌套环MEMS陀螺样机中利用了系统级的温度控制技术,大大提升了陀螺的稳定性能,如图6(a)所示。

系统级的温控功耗较高,温度场不均匀,为克服这些缺点,美国Stanford大学和Inertial Wave公司联合研制了片上温控系统,利用陀螺自身频率作为被控量实现恒温控制,使得0℃~80℃范围内陀螺的标度因数保持不变,零偏保持在小于1(°)/s,如图6(b)所示。由陀螺零偏理论模型可知,除温度影响外,陀螺自身阻尼轴偏转是造成陀螺零偏漂移的主要来源。

为抑制该漂移,实现陀螺的自校准,波音公司借鉴半球陀螺采用了模态交换技术。通过将谐振子的驱动模态与检测模态反转,陀螺的零偏漂移趋势也会相反。在陀螺的工作过程中,不断反转谐振子的工作模态,可以消除零偏的长期漂移,如图6(c)所示。

图6 嵌套环MEMS陀螺零偏补偿技术 

3 总结与展望 

综上所述,近年来嵌套环MEMS陀螺在基础研究、结构优化、测控系统等方面均取得了很大的发展,性能逐步得到提升,但目前其性能水平依旧停留在战术级,高性能与低成本的矛盾仍然未能得到很好的解决。其原因一方面来自于MEMS陀螺本身的设计、加工和材料局限,另一方面来自于对其复杂系统和特殊尺寸效应的认识局限。 

针对这些问题,本文认为需要在以下几个方面进行进一步的研究: 

1)结构设计与加工技术。实现高精度陀螺需要进一步提升材料的稳定性和陀螺的品质因数,因此需要进一步深入研究其材料疲劳失效机理和性能退化机理。摸索有效的退火老化方法,优化圆片级真空封装工艺,实现更高、更稳定真空度的圆片级封装,深入分析能量耗散机理,进一步克服支撑阻尼、表面阻尼等能量损耗,提升陀螺的品质因数。 

2)测控系统。目前,对于陀螺的测控系统研究尚有待提升,需要进一步完善测控系统的传递函数和控制理论,研究陀螺的多参数协同自动补偿方法,突破高精度全闭环动态频率匹配和阻尼匹配关键技术,完善结构误差补偿控制理论和方法。

3)新机理和新效应的研究与应用。由于陀螺尺度的变化,造成其存在非线性、模态耦合等诸多新机理和新效应。因此,需要进一步研究微纳尺度下的非线性效应、振动同步效应,探索陀螺内部模态自耦合机理,研究模态耦合的影响并利用模态耦合提升陀螺的性能,探索动力学操控理论与技术,实现其在模态交换等方面的应用,为实现陀螺性能质的提高寻找思路。 

嵌套环MEMS陀螺由于其结构优势,具有极大的性能潜力。通过对其技术的不断提升,有望实现高精度的微机电陀螺,并广泛应用于导航设备、无人系统、姿态控制等诸多领域。

免责声明:本文系网络转载,版权归原作者所有。本文所用视频、图片、文字如涉及作品版权问题,请第一时间告知,我们将根据您提供的证明材料确认版权并按国家标准支付稿酬或立即删除内容!本文内容为原作者观点,并不代表本公众号赞同其观点和对其真实性负责。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/487829.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

黑科技:绕过眼睛植入幻觉,科学家成功在盲人脑海中呈现指定图像!

来源 | 学术头条&#xff08;ID:SciTouTiao&#xff09;头图 | CSDN付费下载自视觉中国对于全球 5000 多万盲人来说&#xff0c;重见光明是一个遥不可及的梦想。而为了与盲人朋友进行交互&#xff0c;我们发明了盲文&#xff0c;用各种凸起的字符集合来表达各种意思。但这种通过…

ssrf漏洞 php,DokuWiki fetch.php SSRF漏洞与tok安全验证绕过分析

作者&#xff1a;baolongniu of Tencent Security Platform Department关于DokuWikiDokuWiki是一个开源wiki引擎程序&#xff0c;运行于PHP环境下。DokuWiki程序小巧而功能强大、灵活&#xff0c;适合中小团队和个人网站知识库的管理。漏洞简介DokuWiki最新 2016-06-26a版本存在…

[Codevs] 1014 棋盘染色

1049 棋盘染色 时间限制: 1 s空间限制: 128000 KB题目等级 : 黄金 Gold题目描述 Description有一个55的棋盘&#xff0c;上面有一些格子被染成了黑色&#xff0c;其他的格子都是白色&#xff0c;你的任务的对棋盘一些格子进行染色&#xff0c;使得所有的黑色格子能连成一块&…

专访王田苗:机器人是“刚需”,市场正处于逆周期增长

来源&#xff1a;亿欧【本文三大核心点】一、未来老龄化社会的到来与新生代快节奏生活工作的方式让智能机器人处于长期刚性需求。二、人工智能算法、软体材料、5G互联网开放软件平台、多机与人机协作、云服务租赁共享模式等技术给新一代机器人发展带来了大量的产业机遇。三、中…

php算法入门,a011.PHP实战:加密解密,简单算法入门

原标题&#xff1a;a011.PHP实战&#xff1a;加密解密&#xff0c;简单算法入门在PHP编程中&#xff0c;很多时候我们会遇到传递信息的问题&#xff0c;而传递过程中为了安全&#xff0c;我们肯定是要进行加密和解密的&#xff0c;这里&#xff0c;我们来说一说使用PHP怎么进行…

tomcat的安装及配置

1.首先进tomcat官网下载zip压缩文件&#xff1a;http://tomcat.apache.org/download-90.cgi 2.解压缩到指定文件压&#xff08;后面配置环境变量会用到&#xff09; 3.配置环境变量 4.打开解压后文件中的bin文件夹&#xff0c;运行startup.bat 如上图结果则配置成功 5.打开浏览…

好文|奔向宇宙,揭开太空机器人的神秘面纱

来源&#xff1a;千慧知识产权空间机器人是在太空中执行空间站建造与运营、卫星组装与服务、行星表面探测与实验等任务的一类特种机器人&#xff0c;是世界航天大国竞相发展的热点领域。当前&#xff0c;空间机器人已经在国际空间站、飞船、卫星等飞行器的在轨维护、空间装配、…

关于6G,这些你应该了解

来源&#xff1a;内容来自公众号中国电子报——赛迪智库前 言当前&#xff0c;全球新一轮科技革命和产业变革正在加速演进&#xff0c;人工智能&#xff08;AI&#xff09;、VR/AR、三维&#xff08;3D&#xff09;媒体和物联网等新一代信息通信技术的广泛应用产生了巨大的传输…

php显示动态通告信息方式,Joomla PHP通知,警告和错误指南

网站不可避免地会出现问题。无论您使用的是Joomla还是其他产品&#xff0c;都需要发现并修复问题。Joomla使用PHP&#xff0c;当PHP有问题时&#xff0c;它将向您报告。但是&#xff0c;这些错误通常会出现在您的网站上&#xff0c;并且对访问者可见&#xff1a;在本教程中&…

Facebook爆锤深度度量学习:该领域13年来并无进展!网友:沧海横流,方显英雄本色...

来源&#xff1a;AI科技评论近日&#xff0c;Facebook AI和Cornell Tech的研究人员近期发表研究论文预览文稿&#xff0c;声称近十三年深度度量学习&#xff08;deep metric learning&#xff09; 领域的目前研究进展和十三年前的基线方法(Contrastive, Triplet) 比较并无实质提…

不可不看的干货——机器人自主系统的技术构建:感知、决策和执行

来源&#xff1a;机器人大讲堂近年来&#xff0c;随着工业 4.0 标准的不断推进和人工智能、物联网、大数据等技术的快速发展&#xff0c;机器人产业迎来新一轮浪潮&#xff0c;正逐步向系统化、模块化、智能化的方向发展。除了传统的工业机器人外&#xff0c;在特种机器人和服务…

php伪数组转换为数组,JavaScript伪数组用法实例

在Javascript中什么是伪数组&#xff1f;伪数组(类数组)&#xff1a;无法直接调用数组方法或期望length属性有什么特殊的行为&#xff0c;但仍可以对真正数组遍历方法来遍历它们。本文实例讲述了JavaScript伪数组用法&#xff0c;希望能帮助到大家。1.典型的是函数的 argument参…

前沿科技 | 中科院科学家研究揭示奥陶纪末生命大灭绝新机制

来源&#xff1a;中国科学院火山活动是全球气候变化和海洋化学组成巨变的主要驱动力之一&#xff0c;其中“平流层火山喷发”&#xff08;即火山物质喷发至平流层-大约离地表20公里&#xff09;对全球气候有直接的影响。在过去5.4亿年的地质历史中&#xff0c;发生了数次大规模…

空地通信传输详解——飞机是这样和地面通信的

来源&#xff1a;电子万花筒飞机在空中飞行时是如何与地面联络的呢&#xff1f;飞机在飞行中的数据如何进行空地传输呢&#xff1f;那些部件的数据可以被传输呢&#xff1f;飞机的导航、通信、识别系统主要就是保证飞行的&#xff0c;保障在天上、空对空、空对地、地对空、空对…

​IBM人工智能芯片的新进展

来源&#xff1a;内容由半导体行业观察&#xff08;ID&#xff1a;icbank&#xff09;编译自「Venturebeat」&#xff0c;谢谢。IBM苏黎世实验室的研究人员本周在Nature Communications上发表了一篇论文。在文中他们声称&#xff0c;基于相变存储器的技术&#xff0c;他们已经开…

php程序员写bug,程序员的修炼-我们为什么会编写BUG

在最近的一周,我维护的业务系统出现了很多坏毛病,一周七天crash掉了4次,每次都需要都是因为一点很小的问题,触发了蝴蝶效应,导致整个系统全盘崩溃,于是产生除了叙述本篇的想法,当然这并不是为了掩盖我在Coding上的一些细节处理和职责疏忽&#xff0c;只是为了从根本的细节上去分…

强人工智能和弱人工智能

来源&#xff1a;人机与认知实验室人工智能的一个比较流行的定义&#xff0c;也是该领域较早的定义&#xff0c;是由当时麻省理工学院的约翰麦卡锡在1956年的达特矛斯会议上提出的&#xff08;对此有争议&#xff09;&#xff1a;人工智能就是要让机器的行为看起来就像是人所表…

张亚勤2020寄语哥伦比亚大学毕业生:引领未知时代

(哥伦比亚大学巴特勒图书馆&#xff09;2020年5月18日&#xff0c;人工智能和数字视频的世界级科学家和企业家&#xff0c;美国艺术与科学院院士、百度前总裁、清华大学智能科学讲席教授张亚勤博士&#xff0c;在哥伦比亚大学工程学院的毕业典礼上发表了主题演讲。张亚勤说:“面…

科技部部长:基础研究是科技创新“总开关”

来源&#xff1a;中国新闻网中新社北京5月19日电 (记者 孙自法)“基础研究是科技创新的‘总开关’&#xff01;”言及基础研究在中国科技发展、增强原始创新能力中的地位与作用&#xff0c;中国科学技术部部长王志刚这样概括道。国务院新闻办公室19日下午在北京举行加快建设创新…

从通用到专用,5G时代IP核的新故事

来源&#xff1a;半导体行业观察如同芯片在不断迭代&#xff0c;IP核也在不断进步。集成电路技术60年来基本遵循摩尔定律的演进规律。随着进入后摩尔时代&#xff0c;即两年一代技术更换的节奏开始放缓&#xff0c;设计和制造企业开始更加重视产品的多样化发展&#xff0c;而不…