芯片的未来,靠这些技术了

来源:内容来自「technews」,谢谢。

除了先进制程之外,先进封装也成为延续摩尔定律的关键技术,像是2.5D、3D 和Chiplets 等技术在近年来成为半导体产业的热门议题。究竟,先进封装是如何在延续摩尔定律上扮演关键角色?而2.5D、3D 和Chiplets 等封装技术又有何特点?

人工智能(AI)、车联网、5G 等应用相继兴起,且皆须使用到高速运算、高速传输、低延迟、低耗能的先进功能芯片;然而,随着运算需求呈倍数成长,究竟要如何延续摩尔定律,成为半导体产业的一大挑战。

芯片微缩愈加困难,异构整合由此而生

换言之,半导体先进制程纷纷迈入了7 纳米、5 纳米,接着开始朝3 纳米和2 纳米迈进,电晶体大小也因此不断接近原子的物理体积限制,电子及物理的限制也让先进制程的持续微缩与升级难度越来越高。

也因此,半导体产业除了持续发展先进制程之外,也「山不转路转」地开始找寻其他既能让芯片维持小体积,同时又保有高效能的方式;而芯片的布局设计,遂成为延续摩尔定律的新解方,异构整合(Heterogeneous Integration Design Architecture System,HIDAS)概念便应运而生,同时成为IC 芯片的创新动能。

所谓的异构整合,广义而言,就是将两种不同的芯片,例如记忆体+逻辑芯片、光电+电子元件等,透过封装、3D 堆叠等技术整合在一起。换句话说,将两种不同制程、不同性质的芯片整合在一起,都可称为是异构整合。

因为应用市场更加的多元,每项产品的成本、性能和目标族群都不同,因此所需的异构整合技术也不尽相同,市场分众化趋势逐渐浮现。为此,IC 代工、制造及半导体设备业者纷纷投入异构整合发展,2.5D、3D 封装、Chiplets 等现今热门的封装技术,便是基于异构整合的想法,如雨后春笋般浮现。

2.5D 封装有效降低芯片生产成本

过往要将芯片整合在一起,大多使用系统单封装(System in a Package,SiP)技术,像是PiP(Package in Package)封装、PoP(Package on Package)封装等。然而,随着智能手机、AIoT 等应用,不仅需要更高的性能,还要保持小体积、低功耗,在这样的情况下,必须想办法将更多的芯片堆积起来使体积再缩小,因此,目前封装技术除了原有的SiP 之外,也纷纷朝向立体封装技术发展。

立体封装概略来说,意即直接使用硅晶圆制作的「硅中介板」(Silicon interposer),而不使用以往塑胶制作的「导线载板」,将数个功能不同的芯片,直接封装成一个具更高效能的芯片。换言之,就是朝着芯片叠高的方式,在硅上面不断叠加硅芯片,改善制程成本及物理限制,让摩尔定律得以继续实现。

而立体封装较为人熟知的是2.5D 与3D 封装,这边先从2.5D 封装谈起。所谓的2.5D 封装,主要的概念是将处理器、记忆体或是其他的芯片,并列排在硅中介板(Silicon Interposer)上,先经由微凸块(Micro Bump)连结,让硅中介板之内金属线可连接不同芯片的电子讯号;接着再透过硅穿孔(TSV)来连结下方的金属凸块(Solder Bump),再经由导线载板连结外部金属球,实现芯片、芯片与封装基板之间更紧密的互连。

2.5D和3D封装是热门的立体封装技术。(Source:ANSYS)

目前为人所熟知的2.5D 封装技术,不外乎是台积电的CoWoS。CoWoS 技术概念,简单来说是先将半导体芯片(像是处理器、记忆体等),一同放在硅中介层上,再透过Chip on Wafer(CoW)的封装制程连接至底层基板上。换言之,也就是先将芯片通过Chip on Wafer(CoW)的封装制程连接至硅晶圆,再把CoW 芯片与基板连接,整合成CoWoS;利用这种封装模式,使得多颗芯片可以封装到一起,透过Si Interposer 互联,达到了封装体积小,功耗低,引脚少的效果。

台积电CoWos封装技术概念。(Source:台积电)

除了CoWos 外,扇出型晶圆级封装也可归为2.5D 封装的一种方式。扇出型晶圆级封装技术的原理,是从半导体裸晶的端点上,拉出需要的电路至重分布层(Redistribution Layer),进而形成封装。因此不需封装载板,不用打线(Wire)、凸块(Bump),能够降低30% 的生产成本,也让芯片更薄。同时也让芯片面积减少许多,也可取代成本较高的直通硅晶穿孔,达到透过封装技术整合不同元件功能的目标。

当然,立体封装技术不只有2.5D,还有3D 封装。那么,两者之间的差别究竟为何,而3D 封装又有半导体业者正在采用?

相较于2.5D 封装,3D 封装的原理是在芯片制作电晶体(CMOS)结构,并且直接使用硅穿孔来连结上下不同芯片的电子讯号,以直接将记忆体或其他芯片垂直堆叠在上面。此项封装最大的技术挑战便是,要在芯片内直接制作硅穿孔困难度极高,不过,由于高效能运算、人工智能等应用兴起,加上TSV 技术愈来愈成熟,可以看到越来越多的CPU、GPU 和记忆体开始采用3D 封装。

3D封装是直接将芯片堆叠起来。(Source:英特尔)

台积电、英特尔积极发展3D 封装技术

在3D 封装上,英特尔(Intel)和台积电都有各自的技术。英特尔采用的是「Foveros」的3D 封装技术,使用异构堆叠逻辑处理运算,可以把各个逻辑芯片堆栈一起。也就是说,首度把芯片堆叠从传统的被动硅中介层与堆叠记忆体,扩展到高效能逻辑产品,如CPU、绘图与AI 处理器等。以往堆叠仅用于记忆体,现在采用异构堆叠于堆叠以往仅用于记忆体,现在采用异构堆叠,让记忆体及运算芯片能以不同组合堆叠。

另外,英特尔还研发3 项全新技术,分别为Co-EMIB、ODI 和MDIO。Co-EMIB 能连接更高的运算性能和能力,并能够让两个或多个Foveros 元件互连,设计人员还能够以非常高的频宽和非常低的功耗连接模拟器、记忆体和其他模组。ODI 技术则为封装中小芯片之间的全方位互连通讯提供了更大的灵活性。顶部芯片可以像EMIB 技术一样与其他小芯片进行通讯,同时还可以像Foveros 技术一样,通过硅通孔(TSV)与下面的底部裸片进行垂直通讯。

英特尔Foveros技术概念。(Source:英特尔)

同时,该技术还利用大的垂直通孔直接从封装基板向顶部裸片供电,这种大通孔比传统的硅通孔大得多,其电阻更低,因而可提供更稳定的电力传输;并透过堆叠实现更高频宽和更低延迟。此一方法减少基底芯片中所需的硅通孔数量,为主动元件释放了更多的面积,优化裸片尺寸。

而台积电,则是提出「3D 多芯片与系统整合芯片」(SoIC)的整合方案。此项系统整合芯片解决方案将不同尺寸、制程技术,以及材料的已知良好裸晶直接堆叠在一起。

台积电提到,相较于传统使用微凸块的3D 积体电路解决方案,此一系统整合芯片的凸块密度与速度高出数倍,同时大幅减少功耗。此外,系统整合芯片是前段制程整合解决方案,在封装之前连结两个或更多的裸晶;因此,系统整合芯片组能够利用该公司的InFO 或CoWoS 的后端先进封装技术来进一步整合其他芯片,打造一个强大的「3D×3D」系统级解决方案。

此外,台积电亦推出3DFabric,将快速成长的3DIC 系统整合解决方案统合起来,提供更好的灵活性,透过稳固的芯片互连打造出强大的系统。藉由不同的选项进行前段芯片堆叠与后段封装,3DFabric 协助客户将多个逻辑芯片连结在一起,甚至串联高频宽记忆体(HBM)或异构小芯片,例如类比、输入/输出,以及射频模组。3DFabric 能够结合后段3D 与前段3D 技术的解决方案,并能与电晶体微缩互补,持续提升系统效能与功能性,缩小尺寸外观,并且加快产品上市时程。

在介绍完2.5D 和3D 之后,近来还有Chiplets 也是半导体产业热门的先进封装技术之一;最后,就来简单说明Chiplets 的特性和优势。

除了2.5D 和3D 封装之外,Chiplets 也是备受关注的技术之一。由于电子终端产品朝向高整合趋势发展,对于高效能芯片需求持续增加,但随着摩尔定律逐渐趋缓,在持续提升产品性能过程中,如果为了整合新功能芯片模组而增大芯片面积,将会面临成本提高和低良率问题。因此,Chiplets 成为半导体产业因摩尔定律面临瓶颈所衍生的技术替代方案。

Chiplets就像拼图一样,把小芯片组成大芯片

Chiplets 的概念最早源于1970 年代诞生的多芯片模组,其原理大致而言,即是由多个同质、异构等较小的芯片组成大芯片,也就是从原来设计在同一个SoC 中的芯片,被分拆成许多不同的小芯片分开制造再加以封装或组装,故称此分拆之芯片为小芯片Chiplets。

由于先进制程成本急速上升,不同于SoC 设计方式,将大尺寸的多核心的设计,分散到较小的小芯片,更能满足现今的高效能运算处理器需求;而弹性的设计方式不仅提升灵活性,也能有更好的良率及节省成本优势,并减少芯片设计时程,加速芯片Time to market 时间。

使用Chiplets 有三大好处。因为先进制程成本非常高昂,特别是模拟电路、I/O 等愈来愈难以随着制程技术缩小,而Chiplets 是将电路分割成独立的小芯片,并各自强化功能、制程技术及尺寸,最后整合在一起,以克服制程难以微缩的挑战。此外,基于Chiplets 还可以使用现有的成熟芯片降低开发和验证成本。

目前已有许多半导体业者采用Chiplets 方式推出高效能产品。像是英特尔的Intel Stratix 10 GX 10M FPGA 便是采用Chiplets 设计,以达到更高的元件密度和容量。该产品是以现有的Intel Stratix 10 FPGA 架构及英特尔先进的嵌入式多芯片互连桥接(EMIB)技术为基础,运用了EMIB 技术融合两个高密度Intel Stratix 10 GX FPGA 核心逻辑芯片以及相应的I /O 单元。至于AMD 第二代EPYC 系列处理器也是如此。有别于第一代将Memory 与I/O 结合成14 纳米CPU 的Chiplet 方式,第二代是把I/O 与Memory 独立成一个芯片,并将7 纳米CPU 切成8 个Chiplets 进行组合。

总而言之,过去的芯片效能都仰赖半导体制程的改进而提升,但随着元件尺寸越来越接近物理极限,芯片微缩难度越来越高,要保持小体积、高效能的芯片设计,半导体产业不仅持续发展先进制程,同时也朝芯片架构着手改进,让芯片从原先的单层,转向多层堆叠。也因如此,先进封装也成为改善摩尔定律的关键推手之一,在半导体产业中引领风骚。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/486817.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

php 判断不是文件类型,php 判断文件类型

[php]代码库$files array (c:\1.jpg,c:\1.png,c:\1.gif,c:\1.rar,c:\1.zip,c:\1.exe,);foreach ( $files AS $file ){$fp fopen ( $file, "rb" );$bin fread ( $fp, 2 ); //只读2字节fclose ( $fp );$str_info unpack ( "C2chars", $bin );$type_code …

剑桥大学2020《AI全景报告》出炉,177页ppt

转载机器之心作者:泽南、蛋酱、小舟NeurIPS 接收论文中,29% 的作者有中国大学的本科学位,但他们在毕业后有 54% 会去美国攻读研究生博士,这其中又有 90% 选择留美工作。剑桥大学的 2020 版《AI 全景报告》写出了 AI 领域哪些值得关…

centos 7 Hadoop2.7.4完全分布式搭建(一)

(一)系统准备与安装 1.准备下载centos7 (百度自行下载)可以到开源镜像站下载,速度比较快,比如清华的或者阿里的 在vmware上安装 这里我用的是vmware12 打开Vmware 选择文件 选择自定义 选择稍后安装系统 …

神经网络其实和人一样懒惰,喜欢走捷径......

作者 | Jrn-Henrik Jacobsen, Robert Geirhos, Claudio Michaelis,深度学习研究专家译者 | Arvin,责编 | 夕颜出品 | CSDN(ID:CSDNnews)以下为译文:人工智能会很快取代放射科医生吗?最近,研究人…

2017-2018年Scrum状态调查报告

HOW SCRUM IS USED在2017年的报告中,Scrum的应用范围在扩大,已经从其发源的IT部门扩展到了相距甚远的业务部门。2017-2018年度报告的其中一个主要目标就是关注更广泛的敏捷转型,看看不同行业中影响Scrum企业应用及区域应用的细微差别。在这份…

麻省理工选出的全球十大突破性技术

来源:广东省创新孵化器运营研究院《麻省理工科技评论》每年都会评选出当年的“十大突破性技术”,这份在全球科技领域举足轻重的榜单,曾精准预测了脑机接口、智能手表、癌症基因疗法、深度学习等诸多热门技术的崛起。正如比尔盖茨所说&#xf…

从信息传递的视角看因果关系

来源:混沌巡洋舰因果推断让大数据更有温度在六种看待因果关系的视角(机制,反事实,干预,过程,信息传递及概率因果)中,信息传递是潜在应用最广泛的一种。当我们想弄清楚是什么导致某件…

springboot入门_模板

springboot中已经不推荐使用jsp,而是推荐使用模板,如freemarker,thymeleaf等,本文记录在sprigboot中使用模板。 创建一个maven的springboot工程, freemarker,要使用freemarker模板需引入所需要的jar&#x…

姚期智:当科学家发现自己喜欢探索的方向,整个世界会像打游戏一样愉悦

来源:上观新闻 作者:舒抒发现一个大定理的喜悦程度,和小时候吃第一口冰激凌、第一块巧克力是一样的。“走在滨江大道,能闻到江风吹来的桂花香。”夏秋交替之际来到上海,江风、江景和丹桂飘香,让姚期智在演讲…

imageloader图片基本加载

初始化&#xff1a; 配置初始化&#xff1a; <application android:name".Jiaimgapp"使用&#xff1a; http://blog.csdn.net/vipzjyno1/article/details/23206387 http://blog.csdn.net/vipzjyno1/article/details/23206387 http://blog.csdn.net/hudashi/ar…

刚获得物理诺奖的数学家:现实是对完美数学真理的扭曲反应,人脑是最终量子计算机!...

来源&#xff1a; 数学竞赛的那些事儿在20世纪中期&#xff0c;数学探究自然模式的能力被大大地增强了&#xff0c;如果那些远古的几何学者们看到这一切&#xff0c;必将大为惊愕甚至迷惑不解&#xff0c;在极为宏观的尺度上&#xff0c;天文学家们以整个银河系为基本单位&…

如何实时查看linux下的日志

如何实时查看linux下的日志 Unix/linux&#xff08;88&#xff09; cat /var/log/*.log 如果日志在更新&#xff0c;如何实时查看 tail -f /var/log/messages 还可以使用 watch -d -n 1 cat /var/log/messages -d表示高亮不同的地方&#xff0c;-n表示多少秒刷新一次。 该指令&…

2020年世界机器人报告

来源&#xff1a;国际机器人联合会最新的《2020年世界机器人报告》(The new World Robotics 2020 Industrial Robots)显示&#xff0c;在世界各地的工厂中运行的270万台工业机器人&#xff0c;创下纪录&#xff0c;增长了12&#xff05;。新机器人的销量保持较高水平&#xff0…

2020年诺贝尔化学奖得主自述:基因编辑技术将把我们带向何方?

来源&#xff1a;赛先生作者 ┃ Jennifer Doudna &#xff08;美国加州大学伯克利分校化学与分子和细胞生物学系教授&#xff09;翻译 ┃ 马宗敏制版编辑 | 栗子北京时间2020年10月7日下午&#xff0c;诺贝尔奖化学奖授予了基因编辑领域的两位先驱。加州大学伯克利分校教授詹妮…

使用travelbook架设自己的实时位置共享服务

travelbook 是一款开源的安卓APP&#xff0c;它能以低功耗提供实时位置共享&#xff0c;它包含功能如下&#xff1a; 好友之间分享实时位置&#xff1b;记录行程轨迹&#xff1b;标记收藏地点&#xff1b; 这款软件的主要解决的问题包括&#xff1a; 场景1&#xff1a;查看老…

揭秘:1.2亿美元光刻机内部视频曝光,像科幻片一样震撼!

来源&#xff1a;直观学机械 &#xff0c;转今日半导体荷兰阿斯麦&#xff08;ASML&#xff09;公司的光刻机作为世界上最贵最精密的仪器&#xff0c;相信大家都有耳闻&#xff0c;它是加工芯片的设备。其最先进的EUV&#xff08;极紫外光&#xff09;光刻机已经能够制造7nm以下…

树状数组-神奇的二进制

树状数组是解决快速更新以及统计数组某段区间总和&#xff0c;设一个数组A[1-N],需要计算A[M-K]的总和&#xff0c;暴力解法需要O(K-M)&#xff0c;如果我们求出sum&#xff08;1-K&#xff09;和sum&#xff08;1-M&#xff09;,那么答案就是sum(1-M)-sum(1-K); 那么如何快速求…

通往诺贝尔奖之路:盘点10个著名的科学家族

文章 | COLIN HUNTER来源 | 科研大匠科学家们常常将最亲近的合作者当做自己的亲人看待&#xff0c;而对于有些科学家而言&#xff0c;他们的合作者就是他们的家人。无论是由于遗传因素、教育因素还是二者的综合影响&#xff0c;那些开创性的物理学研究往往是一项家庭事业。从杰…

20165212 预备作业3 Linux安装及学习

20165212 预备作业3Linux安装及学习 Linux虚拟机的安装过程 我像大部分同学一样&#xff0c;通过助教学姐给的Ubuntu下载地址下载映像文件、VB&#xff0c;但是屡次出现问题&#xff0c;不停的闪出一下错误提示窗口&#xff1a;在像同学求助无果之后我使用VM、Ubuntu安装了Linu…

特斯拉公布的「新电池」,究竟要用在哪里?

来源丨ArsTechnica作者丨SCOTT K. JOHNSON编译丨科技行者在近期的“电池日&#xff08;battery day&#xff09;”活动上&#xff0c;特斯拉公司终于透露了其长期保密项目的一系列惊人消息——讨论了特斯拉为自家电池组做出的全方位升级与改进&#xff0c;并宣称有望在未来三年…