不能编程、烧钱、没用?潘建伟直播回应“九章”量子计算争议

来源:腾讯科技

在200秒时间内,76个光子穿过中国科学技术大学潘建伟团队精心构筑的光学网络,完成了5000万个样本的高斯玻色采样。而同样一道数学题交给世界上最顶尖  的超级计算机“富岳”,需要6亿年,差距超过了百万亿(10的14次方)。

这个于12月4日揭开面纱的光量子计算模型机名为“九章”,是世界上第二次达到加州理工学院教授普雷斯基尔提出的“量子霸权”(Quantum supremacy)标准的量子计算实验。 

潘建伟觉得这个名称太霸道,不够学术性。他选择了 “量子优越性”(Quamtum advantage)这个词,含义是一样的,即量子计算机在特定问题上超越世界上性能最好的经典计算机。

尽管选择了一个更低调的名词,“九章”还是引发了轰动性的讨论甚至是争议。它只能算一个“没用”的问题?它比谷歌的“悬铃木”要快100亿倍是怎么算出来的?“烧钱”在一台不能编程的机器上值得吗?

陆朝阳与潘建伟

面对这些好奇与质疑,12月30日,“九章”论文通讯作者潘建伟、陆朝阳走进墨子沙龙X知识分子直播间,与其他5名量子信息或计算机领域的学者进行圆桌讨论。

争议一:“九章”是否比谷歌的“悬铃木”快100亿倍?

世界上首个完成这项挑战的是美国谷歌公司。2019年,谷歌使用了53个超导量子比特制作了一台名为“悬铃木”(Sycamore)的处理器,运行随机量子线路采样,耗时约200秒可进行100万次采样。而最强超算、 美国橡树岭国家实验室Summit计算机得到同样结果需要花上一年,差距约十万倍。

而如前文所述,在高斯玻色采样问题上,“九章”比Summit的后浪“富岳”要快百万亿倍,等效地比谷歌的超导量子比特计算机“悬铃木”快100亿倍。

不少人疑惑,“悬铃木”解决的是随机量子线路采样问题,“九章”解决的是高斯玻色采样问题,根本不是一个问题,如何比较?

潘建伟对此类疑惑表示理解;“算的是不一样的东西,怎么来比较,好比一个是跑步,一个是登山。因此,在我们文章里面,我们只是说等效地快多少倍,比方说谷歌算他那个任务和我们算我们这个任务都是10秒钟算法,最快的超级计算机算它那个任务要1万年,算我们这个要1亿年,这就可以等效地比较,这个比较并不是特别严格。”

因此,他呼吁媒体传播不要离开科学内涵,不然不仅没有推动的作用,反而会带来负面的影响。

上海财经大学信息学院教授陆品燕也认为,这里的快多少倍,不能用平时大家接触到的下一代计算机芯片比上一代芯片快多少来理解。

陆朝阳补充道,“九章”量子优越性实验也克服了谷歌实验的一个漏洞。“打个比方的话,它短跑是比经典计算机快的,但它长跑其实是要比经典计算机慢的。‘九章’不管长跑短跑,以现有理论来说,都可以比经典计算机快。”

争议二:“九章”是否能编程?

谷歌发表在《自然》(Nature)上的“悬铃木”论文题目为《基于可编程超导处理器的量子霸权》“Quantum supremacy using a programmable superconducting processor”,而潘建伟团队发表在《科学》(Science)上的“九章”论文题目为《基于光子的量子计算优越性》“Quantum computational advantage using photons”。

“九章”没有提到“可编程”这个概念,引人注目。

对此,潘建伟回应道,光量子计算机原理上是可以编程的,团队计算在下一个版本的“九章”中实现可编程。

他具体解释道, 2001年之前,很多人认为光量子只能在干涉仪里干涉,不能实现光和光之间的强耦合,因此做逻辑门是非常困难的。

“非常有意思的是,三位科学家在2001年的时候本来想证明用光的手段是无法来做通用、有效的量子计算的,结果在证明过程中,他们证明小小的量子光学干涉手段,已经足以用来做有效的、可编程的量子计算了。这当时在我们领域里面引起了比较大的轰动。”

潘建伟表示,量子优越性这个概念本身就只是通向通用量子计算机的第一个里程碑,只是为了演示实现后续里程碑的能力基础。“在第一个里程碑里面,我们就不太关心它可不可以编程,我们主要关心它算得快不快,对那个任务来讲,可不可编程是不太重要的。”

那么,“九章”未来能不能编程?他说道,“其实对光的强度、相位、折射率、反射率等进行调制的话,就能可编程,我们希望能在2-4年里做这个事情。”

不过,潘建伟也强调,可编程不意味着它什么都可以算,不意味着它是一个通用计算机。

质疑三:超算不能更快了?

事实上,无论是“悬铃木”的随机路线采样,还是“九章”的高斯玻色采样,都是为量子计算量身定制的问题,可以说是一场“表演赛”。

尽管如此,还是有人想要在量子计算的专属舞台上挑战量子计算。

事实上,在2019年谷歌刚刚宣布实现量子霸权后不久,IBM公司就证明通过一些优化,将超算解决相同随机路线采样问题的时间从谷歌声称的1万年降到了2.5天。

那么,超算还能不能更快?“九章”的优势能禁住时间的考验吗?这一点上,连计算机科学家内部也有不同的看法。

中国科学院自动化研究所研究员王飞跃相信,量子计算机的优越性是非常牢靠的,目前都没有计算机科学家能证明经典计算能解决这样的难题。比起来,他更担心量子计算发展太快带来的危机。

而陆品燕则对经典计算机怀抱信心。他说道,高斯玻色采样和随机路线采样对应到经典计算就是近似采样的问题,但经典计算机也有很多好办法,不用指数级的时间增长就能完成计算。超算还能不能更快,尚不能盖棺定论。

潘建伟和陆朝阳透露,“九章”的下一个版本将把76个光子拓展到85个以上,从而令原有的一百万亿倍优势再提高一亿倍左右,拉大距离。

不过,陆朝阳强调,希望经典计算机来挑战这样一个10的14次方的优势。

“量子优越性不是一蹴而就,是不断提升的量子机器和经典计算机之间不断的竞争。但我相信量子并行性最终会带来令经典计算机望尘莫及的能力。”

质疑四:“九章”是否很烧钱?

在产业界,量子计算已经掀起来一股烧钱的潮流。

潘建伟说道,据可靠的统计,谷歌以往10年在超导量子计算上至少花了10亿美元以上。即使是在团队内部,也是朱晓波负责的超导量子计算研究比较“值钱”,整条工艺都要自己加工。“我们有学校和科学院的制成,设备仪器是可以调用的,肯定没有那么多。”

潘建伟坦白地表示:“肯定地说,短期内只花了钱,还没有挣钱。现在是把钱烧成纸的阶段,把纸变成钱的时代还没有完全到来。”

不过,他假设如果有一天突然发现高斯玻色采样是个很重要的问题,而且确实可以算到80个光子,从这个角度,量子计算就把之前花的钱都赚回来了。

要知道,“九章”研究团队为了在超算上做比较验证,“神威·太湖之光”超算帮忙出了40万元的电费,进行了40个光子的计算。如果真要算到76个光子,电费就要超过美国的总产值。

争议五:“九章”是否没用?

当然,目前我们还没有发现高斯玻色采样这道对超算来说很难、对“九章”来说很容易的数学题到底有什么应用价值。

理论表明,2000万个比特的量子计算机可以实现Shor算法—大数质因子分解的量子算法,从而可能使得现有的密码形同虚设。

这里人类现在能控制的几十个量子比特还有很大的差距。

“九章”更严谨的定义,其实是早期的量子模拟器。潘建伟表示,从他自己的角度,不介意“九章”被叫做量子计算器或者量子算盘。

陆朝阳表示,“量子优越性”是健康地走向最终目标的基石,而之后的第二个里程碑,就是专用量子模拟器,在材料设计、量子化学、机器学习等领域寻找到机会,提供一些很好的解决方案。这大概需要数百到数千比特。

“我们有信心,估计在未来的五年左右应该是可以做到的。”

在近阶段,陆朝阳希望“九章”可以成为实验研究方面的工具,取代一部分超算的负担。这就像激光一样,刚被发明的时候也是用来做科学实验的。

至于普通大众想要看到的应用,可能需要15-20年的时间。

腾讯量子实验室杰出科学家、香港中文大学终身教授张胜誉不觉得非通用性本身是任何问题,如果我们能用一个非常专用机器解决一个重要的问题,这本身没毛病。

他说道:“关键看这个问题在科学研究或实际应用上任何一方面有比较好的价值。‘悬铃木’和‘九章’在科学上证明了我们之前在比较少的粒子上观测到的现象,在多粒子体系中并没有出现非常不一样的物理。在工程上也是非常难以实现的。两个团队都很伟大,我觉得在科学和工程上的价值是被低估的。”

中国科学技术大学上海研究院量子物理与量子信息研究部教授朱晓波虽然并不负责光量子计算研究方向,但也认为,大家对“九章”科学和技术上的进步关注太少了。他形象地说道,量子优越性最大的意义,“就是孩子终于开始走路了”,这远超比谁快、比谁慢的意义。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/485807.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2021年,神经科学AI有这几大趋势

来源:The Next Web作者:Tristan Greene编译:科技行者新的一年正向我们招手。延续优良的革命传统,又到了发布最新一期AI专家预测报告的时候。各位受访专家将结合自己的所感所知、实验室发现以及企业动态为我们预测新一年中人工智能…

深度遍历和广度遍历

深度优先 例如下图,其深度优先遍历顺序为 1->2->4->8->5->3->6->7 广度优先 如下图,其广度优先算法的遍历顺序为:1->2->3->4->5->6->7->8 转载于:https://www.cnblogs.com/bigman-bugman/p/920252…

java ejb项目_Maven创建EJB项目结构

可以用maven创建EJB项目的结构。1、打开cmd2、输入一下内容mvn archetype:generate -DarchetypeGroupIdorg.codehaus.mojo.archetypes -DarchetypeArtifactIdpom-root -DarchetypeVersion1.1 -DarchetypeRepositoryhttp://repo.maven.apache.org/maven2 -DgroupIdcom.XXX -Dart…

2020年人工智能十大技术进展

pixabay.com来源:知识分子 撰文 : 全体智源学者制版编辑:卢卡斯编者按编者按2020年即将过去,今年人工智能领域有哪些重大进展?位于北京的智源人工智能研究院请 “智源学者” 们从全球的研究成果中评选了一份年度成就名…

CentOS 6快捷安装RabbitMQ教程

1.安装Erlang yum install erlang 2.安装RabbitMQ yum install rabbitmq-server 3.配置开机自启动 chkconfig rabbitmq-server on 4.启动RabbitMQ service rabbitmq-server start 5.查询RabbitMQ路径 whereis rabbitmq 6.进入目录 7.开启RabbitMQ的Web管理界面 ./rabbitmq-plug…

java视频压缩 lz4_关于LZMA和LZ4压缩的疑惑解析

原标题:关于LZMA和LZ4压缩的疑惑解析这是第112篇UWA技术知识分享的推送。今天我们继续为大家精选了若干和开发、优化相关的问题,建议阅读时间10分钟,认真读完必有收获。UWA QQ群:465082844(仅限技术交流)AssetBundleQ:…

微积分的发现是人类精神的最高胜利

来源 : 数学英才微积分早期的思想基础在25岁以前的伽利略就开始作了一系列实验,发现了许多有关物体在地球引力场运动的基本事实,最基本的就是自由落体定律。开普勒在1619年前后归纳为著名的行星运动三大定律。这些成就对后来的绝大部份的数学…

数据库MySQL/mariadb知识点——触发器

触发器 触发器:trigger,是指事先为某张表绑定一段代码,当表中的某些内容发生改变(增、删、改)的时候,系统会自动触发代码并执行。 触发器包含三个要素,分别为 事件类型:增删改&#…

【前沿技术】2021九大技术趋势:规模化机器学习、「零信任」架构

来源:智能研究院《德勤2021年技术趋势》报告研究了疫情一年来对企业战略、运营和技术带来的连锁反应,论述了其重大发现:全球企业正在加速数字化战略转型,从而构建「韧性」、开创全新的经营模式。报告讨论了接下来18至24个月及以后…

Java项目打包成exe的详细教程

Java项目打包成exe的详细教程 把Java项目打包成exe共分为以下两步: 1、 利用Eclipse先把Java项目先打成jar包 2、 利用exe4j工具把jar包转成exe 这里以Java项目(ExeDemo)为例进行讲解 随便在一个位置新建一个文件夹,文件夹的名称也…

数学史上的哲学绝唱——无穷观与数学基础的争论

来源:《广西民族大学学报》2014年11月作者:郭龙先,黄永两千多年来,数学家们一直试图从少数公理出发,根据明确给出的演绎规则推导出其他数学定理,从而把整个数学构造成为一个严密的演绎大厦,然后…

Leetcode--141. 环形链表

给定一个链表,判断链表中是否有环。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有环。 示例 1: 输入:head …

解读自动驾驶的2020:从硬件角度看,无人车商业化落地难在哪?

来源 :AI前线作者 :滴滴自动驾驶技术团队策划 :陈思「重点问题」什么是合适的无人驾驶车辆平台?复杂场景下的“无人驾驶”,传感器硬件系统还有哪些挑战?告别 demo 硬件系统后,下一个前装量产的必…

Leetcode--142. 环形链表Ⅱ

给定一个链表,返回链表开始入环的第一个节点。 如果链表无环,则返回 null。 为了表示给定链表中的环,我们使用整数 pos 来表示链表尾连接到链表中的位置(索引从 0 开始)。 如果 pos 是 -1,则在该链表中没有…

他们提出了一个大胆的猜想:GWT(深度学习)→通用人工智能

来源:AI科技评论编译 :陈彩娴近日,有一篇发表在arXiv的论文“Deep Learning and the Global Workspace Theory”提出了一个大胆的猜想(或理论)。两位作者认为,当下的深度学习已经可以基于一个意识模型&…

科学史上那些盛极一时的“著名理论”是如何被攻破的?

《雅典学院》名画中的亚里士多德和柏拉图来源 :《自然》百年科学经典制版编辑: Morgan在科学发展的过程中,曾经涌现出不少盛极一时而后被证明是错误的理论。这些理论有的也许在今天看来悖谬荒诞,但是从整个科学发展的过程来看,它们仍然有其作…

AI在智能建筑中的应用和发展

来源:中研网图片来源:网络智能建筑诞生于二十世纪末,第一幢智能建筑于1984年在美国哈特福德 (Hartford)市建成。我国于90年代才起步,但迅猛发展势头令世人瞩目。目前,新技术、新产品在智能建筑中…

SpringBoot核心

1.基本配置 1.1入口类和SrpingBootApplication SpringBoot通常有一个名为*Application的入口类,入口类里有一个main方法,这个main方法就是一个标准的java应用的入口方法 。在main方法中使用SpringApplication.run,启动springboot项目。 其中EnablieAutoC…

grpc简单使用 java_gRPC学习记录(四)-官方Demo - Java 技术驿站-Java 技术驿站

了解proto3后,接下来看官方Demo作为训练,这里建议看一遍之后自己动手搭建出来,一方面巩固之前的知识,一方面是对整个流程更加熟悉.官方Demo地址: https://github.com/grpc/grpc-java例子是一个简单的路由映射的应用,它允许客户端获取路由特性的信息,生成…

冯端:漫谈物理学的过去、现在与未来

来源: 算法与数学之美撰文: 冯端 (南京大学物理系)“物理学的过去、现在和未来”是一个非常大而且重要的题目,也是一个非常难讲的题目,特别是涉及物理学的未来,结果往往是贻笑大方。这里以历史的透视为主线&#xff0c…