Redis高可用详解:持久化技术及方案选择

文章摘自:https://www.cnblogs.com/kismetv/p/9137897.html

前言

在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关的知识——持久化、复制(及读写分离)、哨兵、以及集群。

本文将先说明上述几种技术分别解决了Redis高可用的什么问题;然后详细介绍Redis的持久化技术,主要是RDB和AOF两种持久化方案;在介绍RDB和AOF方案时,不仅介绍其作用及操作方法,同时介绍持久化实现的一些原理细节及需要注意的问题。最后,介绍在实际使用中,持久化方案的选择,以及经常遇到的问题等。

系列文章

深入学习Redis(1):Redis内存模型

深入学习Redis(2):持久化

深入学习Redis(3):主从复制

目录

一、Redis高可用概述

二、Redis持久化概述

三、RDB持久化

        1. 触发条件

        2. 执行流程

        3. RDB文件

        4. 启动时加载

        5. RDB常用配置总结

四、AOF持久化

        1. 开启AOF

        2. 执行流程

        3. 启动时加载

        4. AOF常用配置总结

五、方案选择与常见问题

        1. RDB和AOF的优缺点

        2. 持久化策略选择

        3. fork阻塞:CPU的阻塞

        4.AOF追加阻塞:硬盘的阻塞

        5. info命令与持久化

六、总结

一、Redis高可用概述

在介绍Redis高可用之前,先说明一下在Redis的语境中高可用的含义。

我们知道,在web服务器中,高可用是指服务器可以正常访问的时间,衡量的标准是在多长时间内可以提供正常服务(99.9%、99.99%、99.999% 等等)。但是在Redis语境中,高可用的含义似乎要宽泛一些,除了保证提供正常服务(如主从分离、快速容灾技术),还需要考虑数据容量的扩展、数据安全不会丢失等。

在Redis中,实现高可用的技术主要包括持久化、复制、哨兵和集群,下面分别说明它们的作用,以及解决了什么样的问题。

  1. 持久化:持久化是最简单的高可用方法(有时甚至不被归为高可用的手段),主要作用是数据备份,即将数据存储在硬盘,保证数据不会因进程退出而丢失。
  2. 复制:复制是高可用Redis的基础,哨兵和集群都是在复制基础上实现高可用的。复制主要实现了数据的多机备份,以及对于读操作的负载均衡和简单的故障恢复。缺陷:故障恢复无法自动化;写操作无法负载均衡;存储能力受到单机的限制。
  3. 哨兵:在复制的基础上,哨兵实现了自动化的故障恢复。缺陷:写操作无法负载均衡;存储能力受到单机的限制。
  4. 集群:通过集群,Redis解决了写操作无法负载均衡,以及存储能力受到单机限制的问题,实现了较为完善的高可用方案。

二、Redis持久化概述

持久化的功能:Redis是内存数据库,数据都是存储在内存中,为了避免进程退出导致数据的永久丢失,需要定期将Redis中的数据以某种形式(数据或命令)从内存保存到硬盘;当下次Redis重启时,利用持久化文件实现数据恢复。除此之外,为了进行灾难备份,可以将持久化文件拷贝到一个远程位置。

Redis持久化分为RDB持久化和AOF持久化:前者将当前数据保存到硬盘,后者则是将每次执行的写命令保存到硬盘(类似于MySQL的binlog);由于AOF持久化的实时性更好,即当进程意外退出时丢失的数据更少,因此AOF是目前主流的持久化方式,不过RDB持久化仍然有其用武之地。

下面依次介绍RDB持久化和AOF持久化;由于Redis各个版本之间存在差异,如无特殊说明,以Redis3.0为准。

三、RDB持久化

RDB持久化是将当前进程中的数据生成快照保存到硬盘(因此也称作快照持久化),保存的文件后缀是rdb;当Redis重新启动时,可以读取快照文件恢复数据。

1. 触发条件

RDB持久化的触发分为手动触发和自动触发两种。

1) 手动触发

save命令和bgsave命令都可以生成RDB文件。

save命令会阻塞Redis服务器进程,直到RDB文件创建完毕为止,在Redis服务器阻塞期间,服务器不能处理任何命令请求。

而bgsave命令会创建一个子进程,由子进程来负责创建RDB文件,父进程(即Redis主进程)则继续处理请求。

此时服务器执行日志如下:

bgsave命令执行过程中,只有fork子进程时会阻塞服务器,而对于save命令,整个过程都会阻塞服务器,因此save已基本被废弃,线上环境要杜绝save的使用;后文中也将只介绍bgsave命令。此外,在自动触发RDB持久化时,Redis也会选择bgsave而不是save来进行持久化;下面介绍自动触发RDB持久化的条件。

2) 自动触发

save m n

自动触发最常见的情况是在配置文件中通过save m n,指定当m秒内发生n次变化时,会触发bgsave。

例如,查看redis的默认配置文件(Linux下为redis根目录下的redis.conf),可以看到如下配置信息:

其中save 900 1的含义是:当时间到900秒时,如果redis数据发生了至少1次变化,则执行bgsave;save 300 10和save 60 10000同理。当三个save条件满足任意一个时,都会引起bgsave的调用。

save m n的实现原理

Redis的save m n,是通过serverCron函数、dirty计数器、和lastsave时间戳来实现的。

serverCron是Redis服务器的周期性操作函数,默认每隔100ms执行一次;该函数对服务器的状态进行维护,其中一项工作就是检查 save m n 配置的条件是否满足,如果满足就执行bgsave。

dirty计数器是Redis服务器维持的一个状态,记录了上一次执行bgsave/save命令后,服务器状态进行了多少次修改(包括增删改);而当save/bgsave执行完成后,会将dirty重新置为0。

例如,如果Redis执行了set mykey helloworld,则dirty值会+1;如果执行了sadd myset v1 v2 v3,则dirty值会+3;注意dirty记录的是服务器进行了多少次修改,而不是客户端执行了多少修改数据的命令。

lastsave时间戳也是Redis服务器维持的一个状态,记录的是上一次成功执行save/bgsave的时间。

save m n的原理如下:每隔100ms,执行serverCron函数;在serverCron函数中,遍历save m n配置的保存条件,只要有一个条件满足,就进行bgsave。对于每一个save m n条件,只有下面两条同时满足时才算满足:

(1)当前时间-lastsave > m

(2)dirty >= n

save m n 执行日志

下图是save m n触发bgsave执行时,服务器打印日志的情况:

其他自动触发机制

除了save m n 以外,还有一些其他情况会触发bgsave:

  • 在主从复制场景下,如果从节点执行全量复制操作,则主节点会执行bgsave命令,并将rdb文件发送给从节点
  • 执行shutdown命令时,自动执行rdb持久化,如下图所示:

2. 执行流程

前面介绍了触发bgsave的条件,下面将说明bgsave命令的执行流程,如下图所示(图片来源:https://blog.csdn.net/a1007720052/article/details/79126253):

图片中的5个步骤所进行的操作如下:

1)  Redis父进程首先判断:当前是否在执行save,或bgsave/bgrewriteaof(后面会详细介绍该命令)的子进程,如果在执行则bgsave命令直接返回。bgsave/bgrewriteaof 的子进程不能同时执行,主要是基于性能方面的考虑:两个并发的子进程同时执行大量的磁盘写操作,可能引起严重的性能问题。

2)  父进程执行fork操作创建子进程,这个过程中父进程是阻塞的,Redis不能执行来自客户端的任何命令

3)  父进程fork后,bgsave命令返回”Background saving started”信息并不再阻塞父进程,并可以响应其他命令

4)  子进程创建RDB文件,根据父进程内存快照生成临时快照文件,完成后对原有文件进行原子替换

5)  子进程发送信号给父进程表示完成,父进程更新统计信息

3. RDB文件

RDB文件是经过压缩的二进制文件,下面介绍关于RDB文件的一些细节。

存储路径

RDB文件的存储路径既可以在启动前配置,也可以通过命令动态设定。

配置:dir配置指定目录,dbfilename指定文件名。默认是Redis根目录下的dump.rdb文件。

动态设定:Redis启动后也可以动态修改RDB存储路径,在磁盘损害或空间不足时非常有用;执行命令为config set dir {newdir}和config set dbfilename {newFileName}。如下所示(Windows环境):

RDB文件格式

RDB文件格式如下图所示(图片来源:《Redis设计与实现》):

其中各个字段的含义说明如下:

1)  REDIS:常量,保存着”REDIS”5个字符。

2)  db_version:RDB文件的版本号,注意不是Redis的版本号。

3)  SELECTDB 0 pairs:表示一个完整的数据库(0号数据库),同理SELECTDB 3 pairs表示完整的3号数据库;只有当数据库中有键值对时,RDB文件中才会有该数据库的信息(上图所示的Redis中只有0号和3号数据库有键值对);如果Redis中所有的数据库都没有键值对,则这一部分直接省略。其中:SELECTDB是一个常量,代表后面跟着的是数据库号码;0和3是数据库号码;pairs则存储了具体的键值对信息,包括key、value值,及其数据类型、内部编码、过期时间、压缩信息等等。

4)  EOF:常量,标志RDB文件正文内容结束。

5)  check_sum:前面所有内容的校验和;Redis在载入RBD文件时,会计算前面的校验和并与check_sum值比较,判断文件是否损坏。

压缩

Redis默认采用LZF算法对RDB文件进行压缩。虽然压缩耗时,但是可以大大减小RDB文件的体积,因此压缩默认开启;可以通过命令关闭:

需要注意的是,RDB文件的压缩并不是针对整个文件进行的,而是对数据库中的字符串进行的,且只有在字符串达到一定长度(20字节)时才会进行。

4. 启动时加载

RDB文件的载入工作是在服务器启动时自动执行的,并没有专门的命令。但是由于AOF的优先级更高,因此当AOF开启时,Redis会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会在Redis服务器启动时检测RDB文件,并自动载入。服务器载入RDB文件期间处于阻塞状态,直到载入完成为止。

Redis启动日志中可以看到自动载入的执行:

Redis载入RDB文件时,会对RDB文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。

5. RDB常用配置总结

下面是RDB常用的配置项,以及默认值;前面介绍过的这里不再详细介绍。

  • save m n:bgsave自动触发的条件;如果没有save m n配置,相当于自动的RDB持久化关闭,不过此时仍可以通过其他方式触发
  • stop-writes-on-bgsave-error yes:当bgsave出现错误时,Redis是否停止执行写命令;设置为yes,则当硬盘出现问题时,可以及时发现,避免数据的大量丢失;设置为no,则Redis无视bgsave的错误继续执行写命令,当对Redis服务器的系统(尤其是硬盘)使用了监控时,该选项考虑设置为no
  • rdbcompression yes:是否开启RDB文件压缩
  • rdbchecksum yes:是否开启RDB文件的校验,在写入文件和读取文件时都起作用;关闭checksum在写入文件和启动文件时大约能带来10%的性能提升,但是数据损坏时无法发现
  • dbfilename dump.rdb:RDB文件名
  • dir ./:RDB文件和AOF文件所在目录

四、AOF持久化

RDB持久化是将进程数据写入文件,而AOF持久化(即Append Only File持久化),则是将Redis执行的每次写命令记录到单独的日志文件中(有点像MySQL的binlog);当Redis重启时再次执行AOF文件中的命令来恢复数据。

与RDB相比,AOF的实时性更好,因此已成为主流的持久化方案。

1. 开启AOF

Redis服务器默认开启RDB,关闭AOF;要开启AOF,需要在配置文件中配置:

appendonly yes

2. 执行流程

由于需要记录Redis的每条写命令,因此AOF不需要触发,下面介绍AOF的执行流程。

AOF的执行流程包括:

  • 命令追加(append):将Redis的写命令追加到缓冲区aof_buf;
  • 文件写入(write)和文件同步(sync):根据不同的同步策略将aof_buf中的内容同步到硬盘;
  • 文件重写(rewrite):定期重写AOF文件,达到压缩的目的。

1) 命令追加(append)

Redis先将写命令追加到缓冲区,而不是直接写入文件,主要是为了避免每次有写命令都直接写入硬盘,导致硬盘IO成为Redis负载的瓶颈。

命令追加的格式是Redis命令请求的协议格式,它是一种纯文本格式,具有兼容性好、可读性强、容易处理、操作简单避免二次开销等优点;具体格式略。在AOF文件中,除了用于指定数据库的select命令(如select 0 为选中0号数据库)是由Redis添加的,其他都是客户端发送来的写命令。

2) 文件写入(write)和文件同步(sync)

Redis提供了多种AOF缓存区的同步文件策略,策略涉及到操作系统的write函数和fsync函数,说明如下:

为了提高文件写入效率,在现代操作系统中,当用户调用write函数将数据写入文件时,操作系统通常会将数据暂存到一个内存缓冲区里,当缓冲区被填满或超过了指定时限后,才真正将缓冲区的数据写入到硬盘里。这样的操作虽然提高了效率,但也带来了安全问题:如果计算机停机,内存缓冲区中的数据会丢失;因此系统同时提供了fsync、fdatasync等同步函数,可以强制操作系统立刻将缓冲区中的数据写入到硬盘里,从而确保数据的安全性。

 

AOF缓存区的同步文件策略由参数appendfsync控制,各个值的含义如下:

  • always:命令写入aof_buf后立即调用系统fsync操作同步到AOF文件,fsync完成后线程返回。这种情况下,每次有写命令都要同步到AOF文件,硬盘IO成为性能瓶颈,Redis只能支持大约几百TPS写入,严重降低了Redis的性能;即便是使用固态硬盘(SSD),每秒大约也只能处理几万个命令,而且会大大降低SSD的寿命。
  • no:命令写入aof_buf后调用系统write操作,不对AOF文件做fsync同步;同步由操作系统负责,通常同步周期为30秒。这种情况下,文件同步的时间不可控,且缓冲区中堆积的数据会很多,数据安全性无法保证。
  • everysec:命令写入aof_buf后调用系统write操作,write完成后线程返回;fsync同步文件操作由专门的线程每秒调用一次。everysec是前述两种策略的折中,是性能和数据安全性的平衡,因此是Redis的默认配置,也是我们推荐的配置。

3) 文件重写(rewrite)

随着时间流逝,Redis服务器执行的写命令越来越多,AOF文件也会越来越大;过大的AOF文件不仅会影响服务器的正常运行,也会导致数据恢复需要的时间过长。

文件重写是指定期重写AOF文件,减小AOF文件的体积。需要注意的是,AOF重写是把Redis进程内的数据转化为写命令,同步到新的AOF文件;不会对旧的AOF文件进行任何读取、写入操作!

关于文件重写需要注意的另一点是:对于AOF持久化来说,文件重写虽然是强烈推荐的,但并不是必须的;即使没有文件重写,数据也可以被持久化并在Redis启动的时候导入;因此在一些实现中,会关闭自动的文件重写,然后通过定时任务在每天的某一时刻定时执行。

 

文件重写之所以能够压缩AOF文件,原因在于:

  • 过期的数据不再写入文件
  • 无效的命令不再写入文件:如有些数据被重复设值(set mykey v1, set mykey v2)、有些数据被删除了(sadd myset v1, del myset)等等
  • 多条命令可以合并为一个:如sadd myset v1, sadd myset v2, sadd myset v3可以合并为sadd myset v1 v2 v3。不过为了防止单条命令过大造成客户端缓冲区溢出,对于list、set、hash、zset类型的key,并不一定只使用一条命令;而是以某个常量为界将命令拆分为多条。这个常量在redis.h/REDIS_AOF_REWRITE_ITEMS_PER_CMD中定义,不可更改,3.0版本中值是64。

通过上述内容可以看出,由于重写后AOF执行的命令减少了,文件重写既可以减少文件占用的空间,也可以加快恢复速度。

文件重写的触发

文件重写的触发,分为手动触发和自动触发:

手动触发:直接调用bgrewriteaof命令,该命令的执行与bgsave有些类似:都是fork子进程进行具体的工作,且都只有在fork时阻塞。

此时服务器执行日志如下:

 

自动触发:根据auto-aof-rewrite-min-size和auto-aof-rewrite-percentage参数,以及aof_current_size和aof_base_size状态确定触发时机。

  • auto-aof-rewrite-min-size:执行AOF重写时,文件的最小体积,默认值为64MB。
  • auto-aof-rewrite-percentage:执行AOF重写时,当前AOF大小(即aof_current_size)和上一次重写时AOF大小(aof_base_size)的比值。

其中,参数可以通过config get命令查看:

状态可以通过info persistence查看:

只有当auto-aof-rewrite-min-size和auto-aof-rewrite-percentage两个参数同时满足时,才会自动触发AOF重写,即bgrewriteaof操作。

自动触发bgrewriteaof时,可以看到服务器日志如下:

文件重写的流程

文件重写流程如下图所示(图片来源:http://www.cnblogs.com/yangmingxianshen/p/8373205.html):

关于文件重写的流程,有两点需要特别注意:(1)重写由父进程fork子进程进行;(2)重写期间Redis执行的写命令,需要追加到新的AOF文件中,为此Redis引入了aof_rewrite_buf缓存。

对照上图,文件重写的流程如下:

1) Redis父进程首先判断当前是否存在正在执行 bgsave/bgrewriteaof的子进程,如果存在则bgrewriteaof命令直接返回,如果存在bgsave命令则等bgsave执行完成后再执行。前面曾介绍过,这个主要是基于性能方面的考虑。

2) 父进程执行fork操作创建子进程,这个过程中父进程是阻塞的。

3.1) 父进程fork后,bgrewriteaof命令返回”Background append only file rewrite started”信息并不再阻塞父进程,并可以响应其他命令。Redis的所有写命令依然写入AOF缓冲区,并根据appendfsync策略同步到硬盘,保证原有AOF机制的正确。

3.2) 由于fork操作使用写时复制技术,子进程只能共享fork操作时的内存数据。由于父进程依然在响应命令,因此Redis使用AOF重写缓冲区(图中的aof_rewrite_buf)保存这部分数据,防止新AOF文件生成期间丢失这部分数据。也就是说,bgrewriteaof执行期间,Redis的写命令同时追加到aof_buf和aof_rewirte_buf两个缓冲区。

4) 子进程根据内存快照,按照命令合并规则写入到新的AOF文件。

5.1) 子进程写完新的AOF文件后,向父进程发信号,父进程更新统计信息,具体可以通过info persistence查看。

5.2) 父进程把AOF重写缓冲区的数据写入到新的AOF文件,这样就保证了新AOF文件所保存的数据库状态和服务器当前状态一致。

5.3) 使用新的AOF文件替换老文件,完成AOF重写。

3. 启动时加载

前面提到过,当AOF开启时,Redis启动时会优先载入AOF文件来恢复数据;只有当AOF关闭时,才会载入RDB文件恢复数据。

当AOF开启,且AOF文件存在时,Redis启动日志:

当AOF开启,但AOF文件不存在时,即使RDB文件存在也不会加载(更早的一些版本可能会加载,但3.0不会),Redis启动日志如下:

文件校验

与载入RDB文件类似,Redis载入AOF文件时,会对AOF文件进行校验,如果文件损坏,则日志中会打印错误,Redis启动失败。但如果是AOF文件结尾不完整(机器突然宕机等容易导致文件尾部不完整),且aof-load-truncated参数开启,则日志中会输出警告,Redis忽略掉AOF文件的尾部,启动成功。aof-load-truncated参数默认是开启的:

伪客户端

因为Redis的命令只能在客户端上下文中执行,而载入AOF文件时命令是直接从文件中读取的,并不是由客户端发送;因此Redis服务器在载入AOF文件之前,会创建一个没有网络连接的客户端,之后用它来执行AOF文件中的命令,命令执行的效果与带网络连接的客户端完全一样。

4. AOF常用配置总结

下面是AOF常用的配置项,以及默认值;前面介绍过的这里不再详细介绍。

  • appendonly no:是否开启AOF
  • appendfilename "appendonly.aof":AOF文件名
  • dir ./:RDB文件和AOF文件所在目录
  • appendfsync everysec:fsync持久化策略
  • no-appendfsync-on-rewrite no:AOF重写期间是否禁止fsync;如果开启该选项,可以减轻文件重写时CPU和硬盘的负载(尤其是硬盘),但是可能会丢失AOF重写期间的数据;需要在负载和安全性之间进行平衡
  • auto-aof-rewrite-percentage 100:文件重写触发条件之一
  • auto-aof-rewrite-min-size 64mb:文件重写触发提交之一
  • aof-load-truncated yes:如果AOF文件结尾损坏,Redis启动时是否仍载入AOF文件

五、方案选择与常见问题

前面介绍了RDB和AOF两种持久化方案的细节,下面介绍RDB和AOF的特点、如何选择持久化方案,以及在持久化过程中常遇到的问题等。

1. RDB和AOF的优缺点

RDB和AOF各有优缺点:

RDB持久化

优点:RDB文件紧凑,体积小,网络传输快,适合全量复制;恢复速度比AOF快很多。当然,与AOF相比,RDB最重要的优点之一是对性能的影响相对较小。

缺点:RDB文件的致命缺点在于其数据快照的持久化方式决定了必然做不到实时持久化,而在数据越来越重要的今天,数据的大量丢失很多时候是无法接受的,因此AOF持久化成为主流。此外,RDB文件需要满足特定格式,兼容性差(如老版本的Redis不兼容新版本的RDB文件)。

AOF持久化

与RDB持久化相对应,AOF的优点在于支持秒级持久化、兼容性好,缺点是文件大、恢复速度慢、对性能影响大。

2. 持久化策略选择

在介绍持久化策略之前,首先要明白无论是RDB还是AOF,持久化的开启都是要付出性能方面代价的:对于RDB持久化,一方面是bgsave在进行fork操作时Redis主进程会阻塞,另一方面,子进程向硬盘写数据也会带来IO压力;对于AOF持久化,向硬盘写数据的频率大大提高(everysec策略下为秒级),IO压力更大,甚至可能造成AOF追加阻塞问题(后面会详细介绍这种阻塞),此外,AOF文件的重写与RDB的bgsave类似,会有fork时的阻塞和子进程的IO压力问题。相对来说,由于AOF向硬盘中写数据的频率更高,因此对Redis主进程性能的影响会更大。

在实际生产环境中,根据数据量、应用对数据的安全要求、预算限制等不同情况,会有各种各样的持久化策略;如完全不使用任何持久化、使用RDB或AOF的一种,或同时开启RDB和AOF持久化等。此外,持久化的选择必须与Redis的主从策略一起考虑,因为主从复制与持久化同样具有数据备份的功能,而且主机master和从机slave可以独立的选择持久化方案。

 

下面分场景来讨论持久化策略的选择,下面的讨论也只是作为参考,实际方案可能更复杂更具多样性。

(1)如果Redis中的数据完全丢弃也没有关系(如Redis完全用作DB层数据的cache),那么无论是单机,还是主从架构,都可以不进行任何持久化。

(2)在单机环境下(对于个人开发者,这种情况可能比较常见),如果可以接受十几分钟或更多的数据丢失,选择RDB对Redis的性能更加有利;如果只能接受秒级别的数据丢失,应该选择AOF。

(3)但在多数情况下,我们都会配置主从环境,slave的存在既可以实现数据的热备,也可以进行读写分离分担Redis读请求,以及在master宕掉后继续提供服务。

在这种情况下,一种可行的做法是:

master:完全关闭持久化(包括RDB和AOF),这样可以让master的性能达到最好

slave:关闭RDB,开启AOF(如果对数据安全要求不高,开启RDB关闭AOF也可以),并定时对持久化文件进行备份(如备份到其他文件夹,并标记好备份的时间);然后关闭AOF的自动重写,然后添加定时任务,在每天Redis闲时(如凌晨12点)调用bgrewriteaof。

这里需要解释一下,为什么开启了主从复制,可以实现数据的热备份,还需要设置持久化呢?因为在一些特殊情况下,主从复制仍然不足以保证数据的安全,例如:

  • master和slave进程同时停止:考虑这样一种场景,如果master和slave在同一栋大楼或同一个机房,则一次停电事故就可能导致master和slave机器同时关机,Redis进程停止;如果没有持久化,则面临的是数据的完全丢失。
  • master误重启:考虑这样一种场景,master服务因为故障宕掉了,如果系统中有自动拉起机制(即检测到服务停止后重启该服务)将master自动重启,由于没有持久化文件,那么master重启后数据是空的,slave同步数据也变成了空的;如果master和slave都没有持久化,同样会面临数据的完全丢失。需要注意的是,即便是使用了哨兵(关于哨兵后面会有文章介绍)进行自动的主从切换,也有可能在哨兵轮询到master之前,便被自动拉起机制重启了。因此,应尽量避免“自动拉起机制”和“不做持久化”同时出现。

(4)异地灾备:上述讨论的几种持久化策略,针对的都是一般的系统故障,如进程异常退出、宕机、断电等,这些故障不会损坏硬盘。但是对于一些可能导致硬盘损坏的灾难情况,如火灾地震,就需要进行异地灾备。例如对于单机的情形,可以定时将RDB文件或重写后的AOF文件,通过scp拷贝到远程机器,如阿里云、AWS等;对于主从的情形,可以定时在master上执行bgsave,然后将RDB文件拷贝到远程机器,或者在slave上执行bgrewriteaof重写AOF文件后,将AOF文件拷贝到远程机器上。一般来说,由于RDB文件文件小、恢复快,因此灾难恢复常用RDB文件;异地备份的频率根据数据安全性的需要及其他条件来确定,但最好不要低于一天一次。

3. fork阻塞:CPU的阻塞

在Redis的实践中,众多因素限制了Redis单机的内存不能过大,例如:

  • 当面对请求的暴增,需要从库扩容时,Redis内存过大会导致扩容时间太长;
  • 当主机宕机时,切换主机后需要挂载从库,Redis内存过大导致挂载速度过慢;
  • 以及持久化过程中的fork操作,下面详细说明。

首先说明一下fork操作:

父进程通过fork操作可以创建子进程;子进程创建后,父子进程共享代码段,不共享进程的数据空间,但是子进程会获得父进程的数据空间的副本。在操作系统fork的实际实现中,基本都采用了写时复制技术,即在父/子进程试图修改数据空间之前,父子进程实际上共享数据空间;但是当父/子进程的任何一个试图修改数据空间时,操作系统会为修改的那一部分(内存的一页)制作一个副本。

虽然fork时,子进程不会复制父进程的数据空间,但是会复制内存页表(页表相当于内存的索引、目录);父进程的数据空间越大,内存页表越大,fork时复制耗时也会越多。

 

在Redis中,无论是RDB持久化的bgsave,还是AOF重写的bgrewriteaof,都需要fork出子进程来进行操作。如果Redis内存过大,会导致fork操作时复制内存页表耗时过多;而Redis主进程在进行fork时,是完全阻塞的,也就意味着无法响应客户端的请求,会造成请求延迟过大。

对于不同的硬件、不同的操作系统,fork操作的耗时会有所差别,一般来说,如果Redis单机内存达到了10GB,fork时耗时可能会达到百毫秒级别(如果使用Xen虚拟机,这个耗时可能达到秒级别)。因此,一般来说Redis单机内存一般要限制在10GB以内;不过这个数据并不是绝对的,可以通过观察线上环境fork的耗时来进行调整。观察的方法如下:执行命令info stats,查看latest_fork_usec的值,单位为微秒。

为了减轻fork操作带来的阻塞问题,除了控制Redis单机内存的大小以外,还可以适度放宽AOF重写的触发条件、选用物理机或高效支持fork操作的虚拟化技术等,例如使用Vmware或KVM虚拟机,不要使用Xen虚拟机。

4. AOF追加阻塞:硬盘的阻塞

前面提到过,在AOF中,如果AOF缓冲区的文件同步策略为everysec,则:在主线程中,命令写入aof_buf后调用系统write操作,write完成后主线程返回;fsync同步文件操作由专门的文件同步线程每秒调用一次。

这种做法的问题在于,如果硬盘负载过高,那么fsync操作可能会超过1s;如果Redis主线程持续高速向aof_buf写入命令,硬盘的负载可能会越来越大,IO资源消耗更快;如果此时Redis进程异常退出,丢失的数据也会越来越多,可能远超过1s。

为此,Redis的处理策略是这样的:主线程每次进行AOF会对比上次fsync成功的时间;如果距上次不到2s,主线程直接返回;如果超过2s,则主线程阻塞直到fsync同步完成。因此,如果系统硬盘负载过大导致fsync速度太慢,会导致Redis主线程的阻塞;此外,使用everysec配置,AOF最多可能丢失2s的数据,而不是1s。

 

AOF追加阻塞问题定位的方法:

(1)监控info Persistence中的aof_delayed_fsync:当AOF追加阻塞发生时(即主线程等待fsync而阻塞),该指标累加。

(2)AOF阻塞时的Redis日志:

Asynchronous AOF fsync is taking too long (disk is busy?). Writing the AOF buffer without waiting for fsync to complete, this may slow down Redis.

(3)如果AOF追加阻塞频繁发生,说明系统的硬盘负载太大;可以考虑更换IO速度更快的硬盘,或者通过IO监控分析工具对系统的IO负载进行分析,如iostat(系统级io)、iotop(io版的top)、pidstat等。

5. info命令与持久化

前面提到了一些通过info命令查看持久化相关状态的方法,下面来总结一下。

(1)info Persistence

执行结果如下:

其中比较重要的包括:

  • rdb_last_bgsave_status:上次bgsave 执行结果,可以用于发现bgsave错误
  • rdb_last_bgsave_time_sec:上次bgsave执行时间(单位是s),可以用于发现bgsave是否耗时过长
  • aof_enabled:AOF是否开启
  • aof_last_rewrite_time_sec: 上次文件重写执行时间(单位是s),可以用于发现文件重写是否耗时过长
  • aof_last_bgrewrite_status: 上次bgrewrite执行结果,可以用于发现bgrewrite错误
  • aof_buffer_length和aof_rewrite_buffer_length:aof缓存区大小和aof重写缓冲区大小
  • aof_delayed_fsync:AOF追加阻塞情况的统计

(2)info stats

其中与持久化关系较大的是:latest_fork_usec,代表上次fork耗时,可以参见前面的讨论。

六、总结

本文主要内容可以总结如下:

1、持久化在Redis高可用中的作用:数据备份,与主从复制相比强调的是由内存到硬盘的备份。

2、RDB持久化:将数据快照备份到硬盘;介绍了其触发条件(包括手动出发和自动触发)、执行流程、RDB文件等,特别需要注意的是文件保存操作由fork出的子进程来进行。

3、AOF持久化:将执行的写命令备份到硬盘(类似于MySQL的binlog),介绍了其开启方法、执行流程等,特别需要注意的是文件同步策略的选择(everysec)、文件重写的流程。

4、一些现实的问题:包括如何选择持久化策略,以及需要注意的fork阻塞、AOF追加阻塞等。

参考文献

《Redis开发与运维》

《Redis设计与实现》

《Redis实战》

http://www.redis.cn/topics/persistence.html

https://mp.weixin.qq.com/s/fpupqLp-wjR8fQvYSQhVLg

https://mp.weixin.qq.com/s?__biz=MzI4NTA1MDEwNg==&mid=2650764050&idx=1&sn=891287b9f99a8c1dd4ce9e1805646741&chksm=f3f9c687c48e4f91c6631e7f5e36a9169c10549386bec541dbeef92ed0023a373f6ec25c2ef1&mpshare=1&scene=1&srcid=0525xnHQxiFwpzFWSME2LQrb#rd

https://mp.weixin.qq.com/s?__biz=MzI4NTA1MDEwNg==&mid=2650763383&idx=1&sn=348a84605a7cdefe4e075c9f0310f257&chksm=f3f9c5e2c48e4cf41bd3f708bce3f9a1302a699cf7defe611e9aea120fcb424944119e079362&mpshare=1&scene=1&srcid=0525XIl8KXvHYvX42oaUcop0#rd

https://blog.csdn.net/tonyxf121/article/details/8475603

http://heylinux.com/archives/1932.html

https://www.m690.com/archives/380/

转载于:https://www.cnblogs.com/smail-bao/p/9597774.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/485176.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

联合国首席AI顾问专访:我们期望AI应该是完美的,但这永远不会

大数据文摘出品来源:informationweek编译:张大笔茹联合国首席人工智能顾问Neil Sahota分享其对联合国重大AI项目以及当今AI面临的主要挑战的看法。人工智能在各个行业和政府中广泛使用的例子一度存在于科幻小说中。但如今,我们不必担心像许多…

特约专栏丨王耀南院士:人工智能赋能无人系统

来源:中国人工智能学会1 机器智能与智能机器让机器具备人一样的智能,赋予机器思考和推理的能力,是人类最伟大的梦想之一。早在 1948 年,图灵在题为《智能机器》的论文里,第一次为世人勾勒出了人工智能领域的轮廓。随后…

整个宇宙可能是个巨大的神经网络?看科学家们是这样解释的

来源:The Next Web作者:Tristan Greene编译:科技行者核心思想可以简单总结为:整个神经网络内的每种可观察的现象,都可以通过神经网络进行建模。从这个角度来看,宇宙自身在广义上也可能是个硕大无朋的神经网…

Nature封面!我国仿生软体机器人“打卡”地球最深海沟,遨游水下10900米!

来源:之江实验室、仿生深海软体机器人项目组、浙江大学▍适应万米静水压的软体机器人由于极端的静水压力,深海区域人们基本很难探测。位于西太平洋的马里亚纳海沟是已知的海洋最深处,水压高、温度低、完全黑暗,被称为“地球第四极…

2021年斯坦福AI指数报告重磅出炉!中国AI期刊影响力首超美国,视频处理是新风口...

来源:AI科技评论作者:AI科技评论CV在快速工业化,大公司正扩大计算鸿沟。就在刚刚,斯坦福大学正式发布《2021年人工智能指数报告》(“Artificial Intelligence Index Report 2021”)!报告链接&am…

超人类AI的幻想与思考:自下而上构建的自我迭代意识系统

来源:人民网或许很多人都幻想过,如果有一天,人工智能超越了人类的智力水平,世界将会发声怎样天翻地覆的变化。而在这个看似遥远,又似乎近在咫尺的幻想实现之前,不放让我们来深入探讨一下, 怎样才…

elk安装

官网下载最新的rpm包安装。 http://blog.51cto.com/liqingbiao/1928653 es安装head 先安装node wget https://nodejs.org/dist/v0.10.48/node-v0.10.48.tar.gz 加压,make,make install node --version git clone https://github.com/mobz/elasticsearch…

2021城市大脑与智能产业趋势简报第五期

《城市大脑与智能产业趋势简报》是“城市大脑全球标准研究组”推荐的一周内城市大脑和智能产业领域值得关注的重要科技进展、新闻动态、专家观点和专业知识。本次周报(2021.2.24-2021.3.3)共推荐99条重要信息(点击链接地址可以直接打开阅读&a…

物理理论发展放缓?这是一种认知误判

来源:光明日报作者:李侠,系上海交通大学科学史与科学文化研究院院长、教授物理基础理论的发展是否已经停滞。这是一个经常被人们提起但其实很复杂的问题。基于科学哲学的基本理论,笔者认为:以物理学为代表的基础理论仍…

斯坦福连续发了四年的AI报告,今年讲了什么?

来源:机器之心报道编辑:蛋酱、魔王、陈萍由斯坦福大学发起的人工智能指数(AI Index)是一个追踪 AI 动态和进展的非营利性项目,旨在全面研究 AI 行业状况,旨在促进基于数据的 AI 广泛交流和有效对话。刚刚&a…

第一次,人类在人工神经网络中发现了“真”神经元

来源:学术头条本文经授权转载自机器之心(almosthuman2014)OpenAI 的研究者们在人工神经网络 CLIP 上发现了「真」神经元,这种机制解释了 AI 模型对令人惊讶的视觉呈现进行分类时,为何拥有如此的准确性。研究人员表示&a…

AI破解脑电波,准确率超80%!高度还原你眼中最美的ta

本文转自公众号:新智元一千个人眼中有一千个哈姆雷特。由于主观差异,人类的审美有千万种。对于个人偏好的观察,人类尚且还需要思考揣摩,何况是机器,如何做到呢?但最近赫尔辛基大学和哥本哈根大学的一个研究…

svn安装配置

1、安装 #rpm -q subversion #yum -y install subversion 2、创建仓库 #mkdir -p /var/svn/svnrepos #svnadmin create /var/svn/svnrepos 3、修改权限控制文件authz #cd /var/svn/svnrepos/conf/ #vi authz 4、修改账号密码文件passwd #vi passwd 5、修改svn服务配置文件svnse…

委员建议开辟多种科研资助模式,呼唤“科研悬赏制”

本文资源来源自:中国新闻网转自公众号:科奖中心“创新的力量蕴藏在全社会之中,创新的资源理应向全社会开放。”全国政协委员,民盟中央常委、宁夏区委会主委冀永强近日接受中新社记者采访时表示,应积极鼓励探索“科研悬…

入局智慧城市,科技互联网巨头路在何方?

来源:亿欧智库我国已进入智慧城市建设新时期。各大巨头先后入局,拓展云服务场景,赋能政务管理与生产生活的方方面面。未来,场景延展、生态构建与人文关怀将成为智慧城市发展的大趋势。随着新基建政策、“十四五”规划和二〇三五年…

什么是道德?

什么是道德? 热爱青年 百家号17-12-0615:23《什么是道德》 盖凡圣哲之学,不知有多少被后人歪曲谬解,长而久之,错误的反倒变成真理,害人不浅。 比如“道德”之说。绝大多数人理解成一种伦理概念。我们从小带大受到的洗脑…

马斯克的星际飞船SN10又炸了,但技术却向前迈出一大步!

来源:世界先进制造技术论坛(AMT)编辑:小艾 当地时间2021年3月3日,“钢铁侠”马斯克旗下太空探索公司Space X启动星际飞船(Starship)原型SN10的10公里飞行测试。在德克萨斯州进行高空试飞后,首次成功着陆&am…

Elasticsearch 5.6.5 安装head插件

head安装包,下载地址:https://github.com/mobz/elasticsearch-head/archive/master.zip head 插件不能放在elasticsearch-5.6.5文件夹里,head 插件需要单独放,单独去执行;所以在elasticsearch-5.6.5同级目录下解压了 h…

MEMS传感器的下一轮技术变革

来源:麦姆斯咨询例如,红外探测器和微流控器件市场就在新冠肺炎大流行中获得了现象级的大幅增长。此外,疫情带来的居家隔离、远程办公,推动了5G部署、“非接触”语音交互以及数据中心等应用发展,从而加速了射频滤波器、…

当量子计算遇到机器学习

作者: Dr.Alessandro Crimi 译者: 苏本如出品:CSDN(ID:CSDNnews)量子计算和机器学习已经成为当今炙手可热的话题。排除一些明显的炒作外,这当中也有一些真正的基础。随着传统计算技术的发展…