新一代人工智能:从“感知智能”向“认知智能”转化

f66919e74caf6c77be5282f7acfb1b2b.png

来源:光明网  《光明日报》( 2021年05月25日 09版)

新一代人工智能正在逐步从感知智能向认知智能转化——这是全国政协副主席、中国科协主席万钢在第五届世界智能大会上作出的判断。

“感知智能是机器具备了视觉、听觉、触觉等感知能力,将多元数据结构化,并用人类熟悉的方式去沟通和互动。”万钢认为,“认知智能则是从类脑的研究和认知科学中汲取灵感,结合跨领域的知识图谱、因果推理、持续学习等,赋予机器类似人类的思维逻辑和认识能力,特别是理解、归纳和应用知识的能力。”他以新能源智能汽车为例,阐释了“感知智能”向“认知智能”转化的现实图景:新一代智能汽车除了应用系统感知的智能,实现对周边环境的感知和处理外,还必须通过车网协同、车路协同,甚至综合处理超感知的因素,比如地理、交通、路口、信号、气象等实时信息,从而实现更加安全、便捷、高效的智能服务。

“感知智能向认知智能的快速迭代,就更需要跨界协同,进一步提升智能装备的质量和效益。其中最为重要的一环,就是要更加重视类脑科学研究,用创新的理论来指导人工智能的发展。”万钢表示。

事实上,“感知智能”向“认知智能”转化,是新一代人工智能的发展趋势。在众多的研究者和产业化队伍中,不乏捷足先登者。

在天津医院康复科的治疗室里,63岁的脑出血患者徐宝钏正在借助天津大学神经工程团队研发的康复机器人系统,依靠运动想象进行手腕功能康复训练。帮助他的康复机器人叫“神工”,核心技术就是脑机接口,这项技术便是人工认知智能的典型。

“神工”的“爸爸”是个70后的山东人,有着令人印象深刻的名字——明东。1994年,明东考入天津大学精仪学院生物医学工程专业学习。“我们专业本科学制5年,医工兼修。在读博期间,看到许多截瘫患者后期康复治疗非常困难,当时我就想,如果通过机器采集和读取脑电信号,然后解码输出控制信号,让身体执行,是不是可以为截瘫患者建立新的人工运动神经通路,重新获得运动能力。”

明东介绍:“大脑不但有极为复杂的神经网络结构,还有千变万化的动态信息。每说一段话,大脑里可能有上亿个涉及的神经细胞在发放电信号。”头皮脑电波的信号非常微弱,只有百万甚至千万分之一伏,科研工作者要通过传感装置监测不同活动脑电波的变化,再通过这些信息研判出人在做什么样的思考或者有什么意图。捕捉、破译头皮脑电信号类似于在非常嘈杂的购物中心远远地听见、听懂一个人自言自语的呢喃。听到脑语、解读脑语、输出脑语,涉及传感、材料、算法、介质……听上去都不轻松,研究过程的艰难可想而知。

2014年,首台适用于全肢体中风康复的人工神经机器人系统——“神工一号”研制成功。融合了运动想象脑机接口技术和物理训练康复疗法,该系统在中风患者体外,仿生构筑了一条人工神经通路,经过模拟解码患者的运动康复意念信息,进而驱动多级神经肌肉电刺激技术,产生对应动作。随后“神工二号”“神工三号”相继研发成功。目前,“神工”已通过国家食品药品监督管理总局(CFDA)检测,在天津、山东多地三甲医院进行临床试验,受益患者数千例。

明东介绍,脑机接口技术有三个发展阶段:脑机接口、脑机交互和脑机融合。目前正由第一阶段向第二阶段发展过渡,未来脑机接口技术,将从目前脑机单向接口,进化为脑机双向“交互”,最终有望实现脑机完全智能“融合”。

智能网联汽车,也是适应新一代人工智能的演进趋势,正在勃兴的产业集群。换言之,“感知智能”向“认知智能”转化,更醒目地在交通领域显现出来。但是,如何通过产业协同、系统集成,构建精密、庞大、统一的智能网络,使得每一辆人工智能汽车都能获得具备“认知智能”的系统支撑,却是当前亟须攻克的难题。在第5届世界智能大会智能交通峰会上,众多专家一致认为:“作为未来产业发展的战略制高点,我国智能网联汽车产业发展已取得显著成效,目前的重点是从关键技术创新、基础设施建设、标准法规完善、商业模式探索等方面协同发力,加快形成产业竞争优势。”

“提高智能网联汽车的测试效率,降低测试成本,保障测试的有效性,是当前智能网联汽车迫切需要解决的一大难题。”带领团队做了近30年传统车辆测试的长安大学副校长赵祥模说,我国目前在智能网联汽车测试方面存在5个问题:缺少科学系统多维度智能网联汽车测试评价理论体系,测试场景数据库还不够完善、场景数据结构与自动重构技术亟待突破,柔性测试工具链和自适应加速测试技术不完善,封闭测试场景构建方法和场地测试技术以及核心测试装备有待突破,没有完善的系统级或者整车级测试评价标准体系。据了解,长安大学已开展有关工作,具体包括在国内建设了首个智能网联高速公路测试基地,建设全国高校唯一车联网与智能汽车测试场,开展智能网联汽车测试场景构建方法研究和部署工作,研发一些测试工具和测试移动平台,开放国内外首套智能驾驶室内测试平台,开展网联环境下群体控制测试,开展广泛深入的国际合作等。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

55f86122f3b1cc8a614c1fc9f120b6b7.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/483527.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

迷宫城堡 强连通

Problem Description为了训练小希的方向感&#xff0c;Gardon建立了一座大城堡&#xff0c;里面有N个房间(N<10000)和M条通道(M<100000)&#xff0c;每个通道都是单向的&#xff0c;就是说若称某通道连通了A房间和B房间&#xff0c;只说明可以通过这个通道由A房间到达B房…

【计算机网络复习 数据链路层】3.3.1 差错控制(检错编码)

差错控制&#xff08;检错编码&#xff09;一、差错从何而来&#xff1f;二、数据链路层的差错控制2.1 奇偶校验码2.2 CRC循环冗余码一、差错从何而来&#xff1f; 概括来说&#xff0c;传输中的差错都是由于噪声引起的。 全局性&#xff1a;由于线路本身电气特性所产生的随机…

从“元宇宙”热炒中理性看待我国虚拟现实产业发展

来源&#xff1a;工信头条作者&#xff1a;袁钰&#xff08;赛迪顾问、电子信息产业研究中心、分析师&#xff09;2021年4月以来&#xff0c;元宇宙概念大热&#xff0c;国内外巨头企业围绕“元宇宙”加快布局&#xff0c;作为元宇宙核心技术之一的虚拟现实也被寄予厚望。经数据…

2018-2019-2 网络对抗技术 20165332 Exp6 信息搜集与漏洞扫描

2018-2019-2 网络对抗技术 20165332 Exp6 信息搜集与漏洞扫描 基础问题回答 基础问题回答 &#xff08;1&#xff09;哪些组织负责DNS&#xff0c;IP的管理。 答&#xff1a;目前全球有5个地区性注册机构&#xff1a; ARIN主要负责北美地区业务 RIPE主要负责欧洲地区业务 APNIC…

【计算机网络复习 数据链路层】3.3.2 差错控制(纠错编码)

差错控制&#xff08;纠错编码&#xff09;一、海明码1.1 确定校验码位数r1.2 确定校验码和数据的位置1.3 求出校验码的值1.4 检错并纠错一、海明码 **海明码&#xff1a;**发现双比特错&#xff0c;纠正单比特错。 1.1 确定校验码位数r 海明不等式&#xff1a; r 为冗余信…

Nature封面重磅!剑桥大学团队揭开老年痴呆背后的罪魁祸首

来源&#xff1a;naturetau蛋白异常是老年痴呆症的重要病因。英国剑桥大学Sjors H. W. Scheres、Michel Goedert等研究人员在Nature上发文&#xff0c;基于不同的蛋白折叠结构对「tau蛋白病」进行分类&#xff0c;荣登Nature封面。听说过阿尔茨海默病吗&#xff1f;没有。老年痴…

速度比晶体管快1000倍,新型单光子开关登上Nature

来源&#xff1a;机器之心作者&#xff1a;CHARLES Q. CHOI一种新型光学开关每秒钟的运行次数达到 1 万亿次&#xff0c;要比现在商用的顶级硅芯片快100到1000倍&#xff0c;这项研究未来或许可以催生出基于光而不是电的新一代计算机。在如今人们应用最为广泛的计算机架构中&am…

【计算机网络复习 数据链路层】3.4.1 流量控制与可靠传输机制

流量控制与可靠传输机制一、数据链路层的流量控制二、流量控制的方法三、可靠传输、滑动窗口、流量控制一、数据链路层的流量控制 较高的发送速度和较低的接收能力不匹配&#xff0c;会造成传输出错&#xff0c;因此流量控制也是数据链路层的一项重要工作。 数据链路层的流量…

linux的驱动开发——简单驱动程序编写

1.字符设备驱动介绍 \qquad字符设备驱动是linux驱动中&#xff0c;最基本的一类设备驱动&#xff0c;字符设备就是按照一个字节一个字节的方式进行读写操作的设备。读写数据分先后顺序&#xff0c;我们常见的单片机外设&#xff0c;比如led灯、按键、I2C、SPI、LCD等等都属于字…

【计算机网络复习 数据链路层】3.4.2 停止-等待协议

停止-等待协议一、停等协议1.1 无差错情况1.2 有差错控制1.4 停等协议性能分析一、停等协议 1、为什么要有停止-等待协议&#xff1f; 除了比特出差错&#xff0c;底层信道还会出现丢包问题。 丢包&#xff1a; 物理线路故障、设备故障、病毒攻击、路由信息错误等原因&#…

6G目前进展与未来展望

来源&#xff1a;6G俱乐部摘要&#xff1a;随着5G的大规模商用&#xff0c;6G研究也成为了移动通信行业新的研究热点。全球通信发达的国家和地区纷纷出台6G研发规划。面向2030年&#xff0c;如何定义6G&#xff0c;如何支撑6G突破现有技术的束缚&#xff0c;构建全新的能力体系…

一起玩儿物联网人工智能小车(ESP32)——14. 用ESP32的GPIO控制智能小车运动起来(二)

摘要&#xff1a;本文主要讲解如何使用Mixly实现对单一车轮的运动控制。 下面就该用程序控制我们的小车轮子转起来了。打开Mixly软件&#xff0c;然后单击顶部“文件”菜单中的“新建”功能&#xff0c;我们来开启一个新程序的开发工作。 我们的工作同样是先从最简单的开始&am…

【计算机网络复习 数据链路层】3.4.3 后退N帧协议(GBN)

后退N帧协议&#xff08;GBN&#xff09;一、后退N帧协议中的滑动窗口二、GBN发送方必须响应的三件事三、GBN接收方要做的事四、滑动窗口长度一、后退N帧协议中的滑动窗口 发送窗口&#xff1a;发送方维持一组连续的允许发送的帧的序号。 接收窗口&#xff1a;接收方维持一组连…

AI+Science 是人类两大科研范式的结合,工程化正当时

来源&#xff1a;ScienceAI编辑&#xff1a;ScienceAI近年来&#xff0c;人工智能&#xff08;AI&#xff09;快速发展&#xff0c;与此同时&#xff0c;越来越多的自然科学研究开始利用 AI 解决领域问题&#xff0c;比如助力药物研发、癌症疗法、材料发现&#xff0c;以及科研…

Docker 是一个开源的应用容器引擎

Docker 是一个开源的应用容器引擎&#xff0c;让开发者可以打包他们的应用以及依赖包到一个可移植的容器中&#xff0c;然后发布到任何流行的 Linux 机器上&#xff0c;也可以实现虚拟化。容器是完全使用沙箱机制&#xff0c;相互之间不会有任何接口。 Docker中包括三个基本概念…

【计算机网络复习 数据链路层】3.4.4 选择重传协议(SR)

选择重传协议&#xff08;SR&#xff09;一、选择重传协议中的滑动窗口二、SR发送方必须响应的三件事三、SR接收方要做的事四、滑动窗口长度五、总结一、选择重传协议中的滑动窗口 二、SR发送方必须响应的三件事 1、上层的调用 从上层收到数据后&#xff0c;SR发送方检查下一…

FZU - 2103 Bin Jing in wonderland

FZU - 2103 Bin & Jing in wonderland 题目大意&#xff1a;有n个礼物&#xff0c;每次得到第i个礼物的概率是p[i]&#xff0c;一个人一共得到了k个礼物&#xff0c;然后按编号排序后挑选出r个编号最大的礼物。现在给出r个礼物的编号&#xff0c;问能得到这r个礼物的概率。…

登上Science子刊,神经科学再次启发DNN设计!中科院揭秘介观自组织反向传播机制...

来源&#xff1a;AI科技评论作者&#xff1a;张铁林&#xff0c;徐波论文标题&#xff1a;A Mesoscale Plasticity for Efficient AI Learning在人工智能领域&#xff0c;目前人工神经网络中被广泛使用的反向传播算法&#xff08;Backpropagation&#xff0c;BP&#xff09;采用…

【计算机网络复习 数据链路层】3.5.1 信道划分介质访问控制

信道划分介质访问控制一、传输数据使用的两种链路二、介质访问控制2.1 频分多路复用 FDM2.2 时分多路复用 TDM2.3 统计时分复用 STDM2.4 波分多路复用 WDM2.5 码分多路复用 CDM一、传输数据使用的两种链路 点对点链路&#xff1a;两个相邻节点通过一个链路相连&#xff0c;没有…

Nature:初步探索限制饮食如何影响肿瘤生长

来源&#xff1a;生物通近年来&#xff0c;有一些证据表明&#xff0c;饮食干预有助于减缓肿瘤的生长。麻省理工学院的一项新研究分析了小鼠的两种不同饮食&#xff0c;揭示了这些饮食是如何影响癌细胞的&#xff0c;并为为什么限制卡路里可以减缓肿瘤生长提供了解释。该研究检…