【计算机网络复习 数据链路层】3.3.1 差错控制(检错编码)

差错控制(检错编码)

      • 一、差错从何而来?
      • 二、数据链路层的差错控制
        • 2.1 奇偶校验码
        • 2.2 CRC循环冗余码

一、差错从何而来?

概括来说,传输中的差错都是由于噪声引起的。

全局性:由于线路本身电气特性所产生的随机噪声(热噪声),是信道固有的,随机存在的。

​ 解决方法:提高信噪比来减少或避免干扰。

局部性:外界特定的短暂原因所造成的冲击噪声,是产生差错的主要原因。

​ 解决方法:通常利用编码技术来解决。

二、数据链路层的差错控制

差错

  • 位错:比特位出错,1变成0,0变成1
  • 帧错:丢失、重复、失序

比特错

  • 检错编码
    • 奇偶校验法
    • 循环冗余码CRC
  • 纠错编码
    • 海明码

编码 VS 编码

数据链路层编码和物理层的数据编码与调制不同,物理层编码针对的是单个比特,解决传输过程中比特的同步问题,如曼彻斯特编码。而数据链路层的编码针对的是一组比特,它通过冗余码的技术实现一组二进制比特串在传输过程是否出现了差错。

2.1 奇偶校验码

在这里插入图片描述

如果一个字符ASCII编码从低到高依次为11000101,采用奇校验,在下述收到的传输后字符中,哪种错误不能检测?

A. 11000011 B. 11001010 C. 11001100 D. 11010011

奇偶校验码特点: 只能检查出奇数个比特错误,检错能力为50%。

2.2 CRC循环冗余码

在这里插入图片描述

冗余码

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/483525.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从“元宇宙”热炒中理性看待我国虚拟现实产业发展

来源:工信头条作者:袁钰(赛迪顾问、电子信息产业研究中心、分析师)2021年4月以来,元宇宙概念大热,国内外巨头企业围绕“元宇宙”加快布局,作为元宇宙核心技术之一的虚拟现实也被寄予厚望。经数据…

2018-2019-2 网络对抗技术 20165332 Exp6 信息搜集与漏洞扫描

2018-2019-2 网络对抗技术 20165332 Exp6 信息搜集与漏洞扫描 基础问题回答 基础问题回答 (1)哪些组织负责DNS,IP的管理。 答:目前全球有5个地区性注册机构: ARIN主要负责北美地区业务 RIPE主要负责欧洲地区业务 APNIC…

【计算机网络复习 数据链路层】3.3.2 差错控制(纠错编码)

差错控制(纠错编码)一、海明码1.1 确定校验码位数r1.2 确定校验码和数据的位置1.3 求出校验码的值1.4 检错并纠错一、海明码 **海明码:**发现双比特错,纠正单比特错。 1.1 确定校验码位数r 海明不等式: r 为冗余信…

Nature封面重磅!剑桥大学团队揭开老年痴呆背后的罪魁祸首

来源:naturetau蛋白异常是老年痴呆症的重要病因。英国剑桥大学Sjors H. W. Scheres、Michel Goedert等研究人员在Nature上发文,基于不同的蛋白折叠结构对「tau蛋白病」进行分类,荣登Nature封面。听说过阿尔茨海默病吗?没有。老年痴…

速度比晶体管快1000倍,新型单光子开关登上Nature

来源:机器之心作者:CHARLES Q. CHOI一种新型光学开关每秒钟的运行次数达到 1 万亿次,要比现在商用的顶级硅芯片快100到1000倍,这项研究未来或许可以催生出基于光而不是电的新一代计算机。在如今人们应用最为广泛的计算机架构中&am…

【计算机网络复习 数据链路层】3.4.1 流量控制与可靠传输机制

流量控制与可靠传输机制一、数据链路层的流量控制二、流量控制的方法三、可靠传输、滑动窗口、流量控制一、数据链路层的流量控制 较高的发送速度和较低的接收能力不匹配,会造成传输出错,因此流量控制也是数据链路层的一项重要工作。 数据链路层的流量…

linux的驱动开发——简单驱动程序编写

1.字符设备驱动介绍 \qquad字符设备驱动是linux驱动中,最基本的一类设备驱动,字符设备就是按照一个字节一个字节的方式进行读写操作的设备。读写数据分先后顺序,我们常见的单片机外设,比如led灯、按键、I2C、SPI、LCD等等都属于字…

【计算机网络复习 数据链路层】3.4.2 停止-等待协议

停止-等待协议一、停等协议1.1 无差错情况1.2 有差错控制1.4 停等协议性能分析一、停等协议 1、为什么要有停止-等待协议? 除了比特出差错,底层信道还会出现丢包问题。 丢包: 物理线路故障、设备故障、病毒攻击、路由信息错误等原因&#…

6G目前进展与未来展望

来源:6G俱乐部摘要:随着5G的大规模商用,6G研究也成为了移动通信行业新的研究热点。全球通信发达的国家和地区纷纷出台6G研发规划。面向2030年,如何定义6G,如何支撑6G突破现有技术的束缚,构建全新的能力体系…

一起玩儿物联网人工智能小车(ESP32)——14. 用ESP32的GPIO控制智能小车运动起来(二)

摘要:本文主要讲解如何使用Mixly实现对单一车轮的运动控制。 下面就该用程序控制我们的小车轮子转起来了。打开Mixly软件,然后单击顶部“文件”菜单中的“新建”功能,我们来开启一个新程序的开发工作。 我们的工作同样是先从最简单的开始&am…

【计算机网络复习 数据链路层】3.4.3 后退N帧协议(GBN)

后退N帧协议(GBN)一、后退N帧协议中的滑动窗口二、GBN发送方必须响应的三件事三、GBN接收方要做的事四、滑动窗口长度一、后退N帧协议中的滑动窗口 发送窗口:发送方维持一组连续的允许发送的帧的序号。 接收窗口:接收方维持一组连…

AI+Science 是人类两大科研范式的结合,工程化正当时

来源:ScienceAI编辑:ScienceAI近年来,人工智能(AI)快速发展,与此同时,越来越多的自然科学研究开始利用 AI 解决领域问题,比如助力药物研发、癌症疗法、材料发现,以及科研…

Docker 是一个开源的应用容器引擎

Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 Docker中包括三个基本概念…

【计算机网络复习 数据链路层】3.4.4 选择重传协议(SR)

选择重传协议(SR)一、选择重传协议中的滑动窗口二、SR发送方必须响应的三件事三、SR接收方要做的事四、滑动窗口长度五、总结一、选择重传协议中的滑动窗口 二、SR发送方必须响应的三件事 1、上层的调用 从上层收到数据后,SR发送方检查下一…

FZU - 2103 Bin Jing in wonderland

FZU - 2103 Bin & Jing in wonderland 题目大意:有n个礼物,每次得到第i个礼物的概率是p[i],一个人一共得到了k个礼物,然后按编号排序后挑选出r个编号最大的礼物。现在给出r个礼物的编号,问能得到这r个礼物的概率。…

登上Science子刊,神经科学再次启发DNN设计!中科院揭秘介观自组织反向传播机制...

来源:AI科技评论作者:张铁林,徐波论文标题:A Mesoscale Plasticity for Efficient AI Learning在人工智能领域,目前人工神经网络中被广泛使用的反向传播算法(Backpropagation,BP)采用…

【计算机网络复习 数据链路层】3.5.1 信道划分介质访问控制

信道划分介质访问控制一、传输数据使用的两种链路二、介质访问控制2.1 频分多路复用 FDM2.2 时分多路复用 TDM2.3 统计时分复用 STDM2.4 波分多路复用 WDM2.5 码分多路复用 CDM一、传输数据使用的两种链路 点对点链路:两个相邻节点通过一个链路相连,没有…

Nature:初步探索限制饮食如何影响肿瘤生长

来源:生物通近年来,有一些证据表明,饮食干预有助于减缓肿瘤的生长。麻省理工学院的一项新研究分析了小鼠的两种不同饮食,揭示了这些饮食是如何影响癌细胞的,并为为什么限制卡路里可以减缓肿瘤生长提供了解释。该研究检…

【计算机网络复习 数据链路层】3.5.2 ALOHA协议

一、纯ALOHA协议 纯ALOHA协议思想: 不监听信道,不按时间槽发送,随机重发。想发就发。 二、时隙ALOHA协议 时隙ALOHA协议的思想: 把时间分成若干个相同的时间片,所有用户在时间片开始时刻同步接入网络信道&#xff0c…

说好的「机器人出租车」和「自动驾驶汽车」,到底在哪? 原创 我爱至尊宝 科技行者 昨天...

来源:TheNexWeb编译整理:科技行者再有几周就到万圣节了,今年让人害怕的东西可不止是鬼怪、还有更多晦暗不明的新难题。 就拿自动驾驶汽车来说,技术人员直到现在也不清楚怎么才能在完全无需人类介入的情况下实现自主行驶。哪怕是代…