来源: 边缘计算社区
关于边缘计算的许多方面并不新鲜,但它仍在快速发展。例如,“边缘计算”包括已经存在了几十年的分布式零售商店分支系统。这个术语也包含了当地工厂和电信提供商计算系统的各种形式,尽管这是一种比历史规范更紧密、更不私有的方式。
随着传感器数据和机器学习数据的激增,边缘计算可帮助IT和业务领导者解决问题。
然而,即使我们在某些边缘计算部署中看到旧架构的回声,我们也会看到正在发展的边缘趋势,这些趋势很新,至少与以前存在的完全不同。例如,随着传感器数据和机器学习数据的激增,他们正在帮助IT和商业领袖解决从电信到汽车等行业的问题。
关于边缘计算的许多方面并不新鲜,但它仍在快速发展。例如,“边缘计算”包括已经存在了几十年的分布式零售商店分支系统。这个术语也包含了当地工厂和电信提供商计算系统的各种形式,尽管这是一种比历史规范更紧密、更不私有的方式。
随着传感器数据和机器学习数据的激增,边缘计算可帮助IT和业务领导者解决问题。
然而,即使我们在某些边缘计算部署中看到旧架构的回声,我们也会看到正在发展的边缘趋势,这些趋势很新,至少与以前存在的完全不同。例如,随着传感器数据和机器学习数据的激增,他们正在帮助IT和商业领袖解决从电信到汽车等行业的问题。
应该关注的边缘计算趋势
边缘专家探讨了IT和业务领导者在2022年应关注的六大趋势:
一、边缘工作负载越来越大
我们看到的一大变化是边缘上的计算和存储越来越多。分散系统的存在通常更多地是为了减少对网络链接的依赖,完成实际上无法在一个中心位置完成的任务,这个前提是要有合理可靠的通信。但这正在改变。
根据定义,物联网通常涉及收集数据。然而,随着机器学习应用所需的数据从众多传感器流入,原本可能是涓涓细流的事情现在变成了洪水。但即使训练模型通常是在集中式数据中心开发的,这些模型的持续应用也会被推到网络边缘。这限制了网络带宽要求,并允许快速本地操作,例如关闭机器以响应异常的传感器读数。此目标是提供见解并在需要时采取行动。
二、RISC-V取得进展
当然,数据密集型和计算密集型的工作负载需要运行硬件。具体取决于应用以及性能、功耗、成本等之间所需的权衡。传统上的选择通常是自定义、ARM或x86。它们没一个是完全开放的,ARM和x86随着时间的推移开发了一个支持硬件和软件的大型生态系统,它们主要是由领先的处理器组件设计者驱动的。
RISC-V是一种新的、有趣的、基于硬件的开放指令集架构。
为什么耐人寻味?红帽全球新兴技术布道师Yan Fisher是这样说的:“RISC-V的独特之处在于其设计过程和规范是真正开放的。该设计反映了社区基于集体经验和研究的决定。”
这种开放的方法以及与之相伴的活跃生态系统,已经在帮助推动RISC-V设计在广泛的行业中获胜。RISC-V International首席执行官Calista Redmond观察到:“随着向边缘计算的转变,我们看到整个生态系统对RISC-V进行了大量投资,从阿里巴巴、Andes Technology和NXP等跨国公司,到SiFive、Esperanto Technologies和GreenWaves技术等初创公司,都在设计创新的边缘人工智能RISC-V解决方案。”
三、vRAN成为越来越重要的边缘用例
无线电接入网络负责启用和连接诸如智能手机或物联网 设备之类的设备到移动网络。作为5G部署的一部分,运营商正在转向更灵活的vRAN方法,通过解耦硬件和软件来分解高级逻辑RAN组件,并使用云技术进行自动部署、扩展和工作负载分配。
作为5G部署的一部分,运营商正在转向更灵活的虚拟无线接入网络vRAN方法。
红帽电信解决方案经理Hanen Garcia和红帽新兴技术布道师Ishu Verma指出:“一项研究表明,与传统的分布式/集中式RAN配置相比,部署虚拟RAN (vRAN)/开放RAN (oRAN)解决方案可以实现高达44%的网络TCO节省。”他们补充说,“通过这种现代化,通信服务提供商 (CSP) 可以简化网络运营并提高灵活性、可用性和效率——同时为越来越多的用例提供服务。与专有或基于虚拟机的解决方案相比,云原生和基于容器的RAN解决方案成本更低,更易于升级和修改,能够横向扩展,并且供应商锁定更少。”
四、规模驱动运营方式
边缘计算架构的许多方面可能与仅在数据中心内实施的架构不同。设备和计算机的物理安全性可能较弱,并且现场没有IT人员。网络连接可能不可靠。良好的带宽和低延迟不是天然就有的。但许多最紧迫的挑战都与规模有关。可能有数千个(或更多)网络端点。
“严格实行标准化,最大限度地减少操作面积。”
红帽高级首席软件工程师Kris Murphy确定了应对规模问题必须采取的四个主要步骤:“最大限度标准化、最小化操作‘表面积’、尽可能拉而不是推,以及将小事自动化。”
例如,她建议进行事务性更新,即原子性更新,这样系统就不会最终仅部分更新,从而处于不确定的状态。在更新时,她还认为端点提取更新是一种很好的做法,因为“出口连接更可能可用”。还应注意不要同时进行所有更新,以限制峰值负载。
五、边缘计算需要鉴证
在资源紧张的情况下,需要很少或不需要当地资源的能力是值得考虑的务实选择。此外,再说一次,任何方法都需要高度可扩展,否则用途和好处将变得极其有限。一个突出的选择是Keylime项目。“像Keylime这样的技术应该考虑广泛部署,它可以验证计算设备启动,并保持大规模的可信运行状态,尤其是在资源受限的环境中”,红帽新兴技术传播者Ben Fisc
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”