Redis 缓存满了怎么办?

引言

Redis 缓存使用内存来保存数据,随着需要缓存的数据量越来越大,有限的缓存空间不可避免地会被写满。此时,应该怎么办?本篇文章接下来就来聊聊缓存满了之后的数据淘汰机制。

值得注意的是,在 Redis 中 过期策略内存淘汰策略 是两个完全不同的概念。Redis 过期策略指的是 Redis 使用哪种策略,来删除已经过期的键值对;而内存淘汰机制指的是当 Redis 运行内存已经超过设置的最大内存之后,将采用什么策略来删除符合条件的键值对,以此来保障 Redis 高效的运行。

Redis 最大运行内存

只有在 Redis 的运行内存达到了某个阀值,才会触发内存淘汰机制,这个阀值就是我们设置的最大运行内存,此值在 Redis 的配置文件中可以找到,配置项为 maxmemory

内存淘汰执行流程,如下图所示:

内存淘汰执行流程图

查询最大运行内存

我们可以使用命令 config get maxmemory 来查看设置的最大运行内存,命令如下:

127.0.0.1:6379> config get maxmemory
1) "maxmemory"
2) "0"

我们发现此值竟然是 0,这是 64 位操作系统默认的值,当 maxmemory 为 0 时,表示没有内存大小限制。

注意:32 位操作系统,默认的最大内存值是 3GB。

内存淘汰策略

查看 Redis 内存淘汰策略

我们可以使用 config get maxmemory-policy 命令,来查看当前 Redis 的内存淘汰策略,命令如下:

127.0.0.1:6379> config get maxmemory-policy
1) "maxmemory-policy"
2) "noeviction"

可以看出此 Redis 使用的是 noeviction 类型的内存淘汰机制,它表示当运行内存超过最大设置内存时,不淘汰任何数据,但新增操作会报错。

内存淘汰策略分类

早期版本的 Redis 有以下 6 种淘汰策略:

  1. noeviction:不淘汰任何数据,当内存不足时,新增操作会报错,Redis 默认内存淘汰策略;
  2. allkeys-lru:淘汰整个键值中最久未使用的键值;
  3. allkeys-random:随机淘汰任意键值;
  4. volatile-lru:淘汰所有设置了过期时间的键值中最久未使用的键值;
  5. volatile-random:随机淘汰设置了过期时间的任意键值;
  6. volatile-ttl:优先淘汰更早过期的键值。

在 Redis 4.0 版本中又新增了 2 种淘汰策略:

  1. volatile-lfu:淘汰所有设置了过期时间的键值中,最少使用的键值;
  2. allkeys-lfu:淘汰整个键值中最少使用的键值。

其中 allkeys-xxx 表示从所有的键值中淘汰数据,而 volatile-xxx 表示从设置了过期键的键值中淘汰数据。

修改 Redis 内存淘汰策略

设置内存淘汰策略有两种方法,这两种方法各有利弊,需要使用者自己去权衡。

  • 方式一:通过“config set maxmemory-policy 策略”命令设置。它的优点是设置之后立即生效,不需要重启 Redis 服务,缺点是重启 Redis 之后,设置就会失效。
  • 方式二:通过修改 Redis 配置文件修改,设置“maxmemory-policy 策略”,它的优点是重启 Redis 服务后配置不会丢失,缺点是必须重启 Redis 服务,设置才能生效。

内存淘汰算法

从内存淘汰策略分类上,我们可以得知,除了随机删除和不删除之外,主要有两种淘汰算法:LRU 算法LFU 算法

LRU 算法

LRU 全称是 Least Recently Used 译为最近最少使用,是一种常用的页面置换算法,选择最近最久未使用的页面予以淘汰。

1. LRU 算法实现

LRU 算法需要基于链表结构,链表中的元素按照操作顺序从前往后排列,最新操作的键会被移动到表头,当需要内存淘汰时,只需要删除链表尾部的元素即可。

2. 近 LRU 算法

Redis 使用的是一种近似 LRU 算法,目的是为了更好的节约内存,它的实现方式是给现有的数据结构添加一个额外的字段,用于记录此键值的最后一次访问时间,Redis 内存淘汰时,会使用随机采样的方式来淘汰数据,它是随机取 5 个值(此值可配置),然后淘汰最久没有使用的那个。

3. LRU 算法缺点

LRU 算法有一个缺点,比如说很久没有使用的一个键值,如果最近被访问了一次,那么它就不会被淘汰,即使它是使用次数最少的缓存,那它也不会被淘汰,因此在 Redis 4.0 之后引入了 LFU 算法,下面我们一起来看。

LFU 算法

LFU 全称是 Least Frequently Used 翻译为最不常用的,最不常用的算法是根据总访问次数来淘汰数据的,它的核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”。

LFU 解决了偶尔被访问一次之后,数据就不会被淘汰的问题,相比于 LRU 算法也更合理一些。

在 Redis 中每个对象头中记录着 LFU 的信息,源码如下:

typedef struct redisObject {unsigned type:4;unsigned encoding:4;unsigned lru:LRU_BITS; /* LRU time (relative to global lru_clock) or* LFU data (least significant 8 bits frequency* and most significant 16 bits access time). */int refcount;void *ptr;
} robj;

在 Redis 中 LFU 存储分为两部分,16 bit 的 ldt(last decrement time)和 8 bit 的 logc(logistic counter)。

  1. logc 是用来存储访问频次,8 bit 能表示的最大整数值为 255,它的值越小表示使用频率越低,越容易淘汰;
  2. ldt 是用来存储上一次 logc 的更新时间。

总结

综上所述我们了解到,Redis 内存淘汰策略和过期回收策略是完全不同的概念,内存淘汰策略是解决 Redis 运行内存过大的问题的,通过与 maxmemory 比较,决定要不要淘汰数据,根据 maxmemory-policy 参数,决定使用何种淘汰策略,在 Redis 4.0 之后已经有 8 种 淘汰策略了,默认的策略是 noeviction 当内存超出时不淘汰任何键值,只是新增操作会报错。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/48259.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C. Another Array Problem

思路:这个题没想到吧数先往0上搞,然后一直想不出来,为什么要先往0上搞呢,对于每个数来说,它最大只会变成这一堆数的最大值,所以我们考虑能不能变成最大值,那么只要是两个相等的数通过一次操作就…

关于JSONObject以及JSONArray对象的相关转化

1.JSONObject转换为Map对象 public static Map<String,Object> transformJsonToMap(JSONObject jsonObject){Map<String,Object> mapObj new HashMap<>();//循环转换for (Map.Entry<String, Object> entry : jsonObject.entrySet()) {mapObj.put(ent…

xcode14.3更新一系列问题

1. Missing file libarclite_iphoneos.a (Xcode 14.3) 解决方法 Xcode升级到14.3后编译失败&#xff0c;完整错误日志&#xff1a; File not found: /Applications/Xcode-beta.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/lib/arc/libarclite_iphoneo…

C语言好题解析(四)

目录 选择题一选择题二选择题三选择题四选择题五编程题一 选择题一 已知函数的原型是&#xff1a; int fun(char b[10], int *a); 设定义&#xff1a; char c[10];int d; &#xff0c;正确的调用语句是&#xff08; &#xff09; A: fun(c,&d); B: fun(c,d); C: fun(&…

Android 9系统源码_SystemUI(十)SystemUIVisibility属性

前言 在Android系统中&#xff0c;很多应用都需要根据具体情况来控制状态栏和导航栏的显示和隐藏&#xff0c;又或者将状态栏透明&#xff0c;实现诸如沉浸式、全面屏灯效果&#xff0c;而要实现这些效果&#xff0c;都离不开SystemUIVisibility属性。由于SystemUIVisibilityy…

jvm 运行时数据区

Java虚拟机定义了若干种程序运行期间会使用到的运行时数据区,其中有一些会随着虚拟机启动而创建,随着虚拟机退出而销毁。另外一些则是与线程一一对应的,这些与线程对应的数据区域会随着线程开始和结束而创建和销毁 1.1程序计数器 程序计数器也叫pc寄存器 可以看作是当前线程…

OLAP 和 OLTP区别

OLAP 和 OLTP 1、概述2、处理数据类型3、处理数据模式4、性能要求5、数据安全性6、应用场景7、结论 1、概述 OLAP在线分析处理&#xff08;Online Analytical Processing&#xff09; 是一种计算机处理数据的方式&#xff0c;主要用于处理企业级的决策分析、战略分析以及业务分…

Java进阶(4)——结合类加载JVM的过程理解创建对象的几种方式:new,反射Class,克隆clone(拷贝),序列化反序列化

目录 引出类什么时候被加载JVM中创建对象几种方式1.new 看到new : new Book()2.反射 Class.forName(“包名.类名”)如何获取Class对象【反射的基础】案例&#xff1a;连接数据库方法 3.克隆&#xff08;拷贝&#xff09;clone浅拷贝深拷贝案例 序列化和反序列化对象流-把对象存…

【面试题】前端面试复习6---性能优化

前端面试题库 &#xff08;面试必备&#xff09; 推荐&#xff1a;★★★★★ 地址&#xff1a;前端面试题库 性能优化 一、性能指标 要在 Chrome 中查看性能指标&#xff0c;可以按照以下步骤操作&#xff1a; 打开 Chrome 浏览器&#xff0c;并访问你想要测试…

lvs-DR

lvs-DR数据包流向分析 client向目标VIP发出请求。 DIR根据负载均衡算法一台active的RS&#xff08;RIR1&#xff09;&#xff0c;将RIP1所在的网卡的mac地址作为目标的mac地址&#xff0c;发送到局域网里。 RIRI在局域网中的收到这个帧&#xff0c;拆开后发现目标&#xff08…

C++类模板的特化(三)

本文主要介绍类模板的特化、局部特化和缺省模板实参&#xff1b; 1.类模板的特化 类模板的特化&#xff08;Class Template Specialization&#xff09;是指为特定的模板参数提供自定义实现的过程。通过特化&#xff0c;我们可以针对某些特定的类型或条件提供不同的行为或实现…

dart基础类型与方法使用

dart基础类型与方法使用 类型及方法 字符串、数字、列表、集合、映射&#xff0c;及列表、集合、映射相互转换 void foo() {var toly Person(xiaoming);toly.say();var bm toly.bmi(height: 170, weight: 60);print(bm);toly.logNumFunc(-100.5);toly.logStrFunc(你好.abd…

IPEmotion交流电功率分析计算

一 应用背景 随着国内电动汽车行业的快速发展&#xff0c;在相同的道路环境和行驶状态下&#xff0c;增加电动车的整体续航里程和提升乘员对于行驶途中用电需求的满意度尤为重要。对此&#xff0c;需要采集试验过程中交直流电压电流信号&#xff0c;以计算出车辆各种部件输出和…

Docker容器与虚拟化技术:Docker镜像创建、Dockerfile实例

目录 一、理论 1.Docker镜像的创建方法 2.Docker镜像结构的分层 3.Dockerfile 案例 4.构建Systemctl镜像&#xff08;基于SSH镜像&#xff09; 5.构建Tomcat 镜像 6.构建Mysql镜像 二、实验 1.Docker镜像的创建 2. Dockerfile 案例 3.构建Systemctl镜像&#xff08;…

redis的应用场景

Redis最适合所有数据in-momory的场景&#xff0c;虽然Redis也提供持久化功能&#xff0c;但实际更多的是一个disk-backed的功能&#xff0c;跟传统意义上的持久化有比较大的差别&#xff0c;那么可能大家就会有疑问&#xff0c;似乎Redis更像一个加强版的Memcached&#xff0c;…

大数据平台需要做等保测评吗?怎么做?

大数据时代的数据获取方式、存储规模、访问特点、关注重点都有了很大不同&#xff0c;所以保证大数据平台数据安全尤其重要。因此不少人在问&#xff0c;大数据平台需要做等保测评吗&#xff1f;怎么做&#xff1f; 大数据平台需要做等保测评吗&#xff1f; 大数据平台是需要做…

数据结构之——(手撕)顺序表

本章会介绍的知识点如下图&#xff1a; 1&#xff1a; 顺序表的概念&#xff1a;顺序表是用一段物理地址连续的存储单元依次存储数据的线性结构&#xff0c;通常我们使用数组来表示&#xff0c;对数组进行增删查改。 顺序表的结构&#xff1a;逻辑结构与物理结构都是内存中一块…

AI Agent在情景猜谜场景下的AgentBench基准测试

目录 AgentBench评估哪些场景? 近日,来自清华大学、俄亥俄州立大学和加州大学伯克利分校的研究者设计了一个测试工具——AgentBench,用于评估LLM在多维度开放式生成环境中的推理能力和决策能力。研究者对25个LLM进行了全面评估,包括基于API的商业模型和开源模型。 他们发现…

数字人学习目录

数字人学习目录 百度PaddlePaddleHub图像风格迁移模型pp-tinypose模型 PaddleGANPaddleLitePaddleDetectionPP-TinyPose 人体骨骼关键点识别 PaddleSpeechVisualDLPaddleBobo TransformerWav2LibCLIPFFMpeg模型库数据集学习天地PythonJupyter Notebook Unity3DUE 百度Paddle P…

docker之Consul环境的部署

目录 一.Docker consul的介绍 1.1template模板(更新) 1.2registrator&#xff08;自动发现&#xff09; 1.3agent(代理) 二.consul的工作原理 三.Consul的特性 四.Consul的使用场景 五.搭建Consul的集群 5.1需求 5.2部署consul 5.3主服务器[192.168.40.20] 5.4client部署&…