Jurassic-X: 让神经模型学会符号推理

2c65df402cba3d74575b9b66c65500fc.png

来源:前沿科技

解读:Antonio

编辑:陈彩娴

近期,一家以色列NLP研究机构AI21 Labs开发了一个名叫Jurassic-X的算法系统,它基于该实验室提出来的MRKL(它与miracle谐音)系统。Jurassic-X的前身是对标GPT-3的Jurassic-1,然而却克服了它们不擅于推理、更新昂贵、不能有效处理时序数据等缺点。

6b96e93ba3f40a930df909d11a94218d.png

论文地址:https://arxiv.org/pdf/2204.10019.pdf

1

MRKL系统

MRKL的全称是模块化推理、知识和语言系统(Modular Reasoning, Knowledge and Language),它试图将现有的神经网络模型,如大规模语言模型LLM,和外部知识库,以及过去流行的符号专家系统结合在一起,从而来兼顾神经模型和符号推理能力。

这一系统是针对现有的大规模语言模型的诸多缺点进行的改进。在GPT-3以及Jurassic-1等大规模语言模型进行预训练,之后应用在多个下游任务,常常有两种极端的方式:

(1)多个任务直接通过零样本学习的方式进行。这种方式无需更新任何参数,从而保证了多功能性(versatility);

(2)在每个任务上都对于大规模语言模型进行微调。这种方式不仅需要大量的资源,具有很差的迁移性,还会经常导致在一个任务微调完之后,其余任务表现得很差——灾难性遗忘(catastrophic forgetting)的困境。

基于MRKL系统的Jurassic-X则主要借鉴了类似于prompt learning的方式,来冻结大部分模型原有的参数,仅更新一部分任务相关的参数来避免上述问题。之后会对这块的方法有一个初步的介绍。

同时,仅仅依赖神经语言模型,也会有很多本质上的问题:它们对于外部知识无法高效利用,尤其对于一些时序更新的数据,例如新冠疫情最新的数据以及货币汇率等信息,它们的推理能力很弱,例如最简单的算术题(自然语言给出的)有时候都会犯错。

举例来说:

57ec0db903793133829678acac018b83.png

问题:在最近的一个月里,哪一家清洁能源公司有最大的份额增长?

这是一个组合的“多专家”问题:首先模型会从例如百科库WIKI接口中获取有哪些清洁能源公司,之后它会从日历中获取上个月指的是什么时候,以及从数据库中获取相应的份额增长;之后在汇总了上述信息后,它可以通过一个计算器去计算“最大的增长”,最后通过语言模型来给出答案。

要完成这些目标需要训练离散的专家系统,将他们的接口和神经网络之间进行平滑,并在不同的模块之间去选择等等。一些技术细节可以参考介绍MRKL的文章,之后会针对其中在下游任务上的训练方式做一个简要的介绍,更详细的技术细节可以参考论文。

财富杂志从商业角度分析了MRKL以及Jurassic-X反映了当代AI的四个趋势:通用性、基于LLM、混合系统、减少权重训练。

2

通用性和基于LLM

MRKL致力于仅使用单一模型解决各种各样的自然语言任务,而并不是像现阶段很多模型只能解决特定的单一任务,这是朝着通用人工智能的必经之路。例如,一个流畅的机器人对话系统不仅仅能顺畅地完成对话,还可以同时对某些话语进行情感分析。事实上,GPT-3等大规模模型已经显示出它的在多个任务上零样本学习的巨大潜力了,而大规模语言模型预训练,多个任务共享该模型进行微调早已成为研究界熟悉的训练范式了,商业上紧跟其后,也是预料之中。

082c6435f52eb7f7aad79eaa6891dc9c.png

对标GPT-3的LLM:Jurassic-1

3

混合系统

尽管基于神经模型的方式获得了令人印象深刻的性能,不过GPT-3在涉及到一些哪怕是很简单的推理时也会犯一些低级错误,尤其涉及到比较复杂的语言描述,例如多个数相加;涉及到最新的消息,例如纽约现在的天气。它仅仅从过去训练好的数据中进行推断天气情况,难以迁移到新的场景下,而如果用更新的数据,则需要重新训练模型,而这需要巨大的代价。

b5caf3f293421d39a3f6fff5347516c2.png

不同专家系统之间的连接

因此MRKL使用了代表当代AI在商业角度下的第三个趋势——使用神经和符号结合的混合系统。MRKL融合了不同的模块,有些模块使用了深度学习,有些则使用符号推理模式的专家系统,例如直接从某些数据知识库中进行检索等模块,来获取更新的信息。

MRKL中一个出色的设计被称作是路由(router)的模块,它可以根据用户的问题匹配一个专家系统:例如如果问题涉及到数学,它会转向一个计算器,如果问题涉及到汇率,它会路由到一个汇率转换器,如果是天气的话,它会转到一个天气网站等等;如果路由对于问题不确定,它会先通过Jurassic-1等语言模型利用上下文推断出应该转向哪个专家模块。

4

权重更新方式

MRKL还采用了prompt tuning的方式对于模型的下游任务进行更新,如上述,这种方式避免了灾难性遗忘的微调模式以及零样本学习的低性能。与传统的prompt tuning方式相比,Jurassic-X使用了更加精细的设计:(1)依赖于模型输入的prompt学习方式。(2)检索增强的prompt生成方式。(3)递归式地应用冻结了的LM模型。论文中做了更加详细的技术介绍,感兴趣的读者可以直接阅读论文。

685b98f8f47f4764694267e5b33c59d0.png

MRKL中采用递归方式涉及prompt learning

5

应用实例

博客中介绍了几种MRKL的应用场景举例,都是一些值得关注和实用的一些话题,涉及到方方面面可能出现在日常场景中的问题。

用人类语言去阅读和更新数据库

af00a2022b94581e28579870a2a6280a.png

问题:买玫瑰味的洗发水

Jurassic-X会从人类语言中提取中关键信息,并从商店清单中去检索产品,加入到购物车的数据库中。这在智能助理,电子商务等都有应用前景。

对于当下问题的文本生成

cf664e8f42b643445b5f0c17c42f8b45.png

问题:谁是当下的美国总统

Jurassic-X会融合当下及时更新的外部数据库,例如维基百科去产生更及时的数据。

数学操作

5a2c457370bbd2841ed259b0f1f1a7ab.png

问题:公司的655400份份额被94个员工平均分配,每个员工得到多少?

Jurassic-X会通过语言模型提出去关键信息,并且应该去寻找一个“数学专家”,也就是计算器,从而得出正确结果。

组合型问题

5869636f35315104327d4f1b386da4dd.png

问题:更多的人住在Tel Aviv还是Berlin?

Jurassic会将组合型问题分解为若干子问题:Tel Aviv的人口是多少?Berlin人口是多少?哪个数字更大?等,解决了每个子问题后再把它们汇总在一起。更重要的是,这样也增加了可解释性,说明了模型给出答案的依据。

天气、汇率等动态信息

894287fd24402b8e34ecc39e8581e22d.png

问题:100美元可以换多少摩洛哥币?

Jurassic会把语言模型和一些及时更新的知识库融合在一起,从而容易获取到实践性敏感的动态信息。

透明性和可信性

20e82c3bee356d92cbc9c97c3a0ed965.png

问题:克林顿是否曾经当选过美国总统

这里涉及到Clinton的歧义问题,问题的答案取决于哪个Clinton,是Bill Clinton还是他的妻子。Jurassic-X可以做出更加明确、透明的回答,而其他神经模型则不行。

6

AI21 Labs

AI21实验室位于以色列的一家自然语言处理的研究机构;它同时也是一个商业机构,旨在将现有的NLP技术快速部署到商业应用中。创始人包括从斯坦福大学退休了的人工智能教授Yoav Shoham;一家自动驾驶公司Mobileye的创始人Amnon Shashua,以及众包平台CrowdX创始人Ori Goshen。这家公司的口号是“重构人们的读写方式,朝向更美好的未来”(reimaging the way people read and write, for the better)。

ae0931505efd11de07189796346c2018.png


参考链接

https://fortune.com/2022/04/19/ai21-labs-mrkl-ultra-large-language-models-jurassic/

https://storage.cloud.google.com/ai21-public-data/publications/MRKL_paper.pdf

https://arxiv.org/pdf/2204.10019.pdf

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

3b69e3d13eb2ed9d5fd5e369092024ba.png

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/482167.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

知识图谱最新权威综述论文解读:关系抽取

上期我们介绍了2020年知识图谱最新权威综述论文《A Survey on Knowledge Graphs: Representation, Acquisition and Applications》的知识图谱实体发现部分,本期我们将一起学习这篇论文的关系抽取部分。 论文地址: https://arxiv.org/pdf/2002.00388.p…

斯坦福大学CS520知识图谱系列课程学习笔记:第一讲什么是知识图谱

随着知识图谱在人工智能各个领域的广泛使用,知识图谱受到越来越多AI研究人员的关注和学习,已经成为人工智能迈向认知系统的关键技术之一。之前,斯坦福大学的面向计算机视觉的CS231n和面向自然语言处理的CS224n成为了全球非常多AI研究人员的入…

数学三大核心领域概述:代数、几何、分析

来源 :数学与人工智能摘选自《数学史海揽胜》有删改数学发展到现在,已经成为科学世界中拥有100多个主要分支学科的庞大的“共和国”。大体说来数学有三大核心领域:数学中研究数的部分属于代数学的范畴;研究形的部分,属…

斯坦福大学CS520知识图谱系列课程学习笔记:第二讲如何构建知识图谱

上一讲我们学习了知识图谱的一些基本概念: 斯坦福大学CS520知识图谱系列课程学习笔记:第一讲什么是知识图谱 本节课程关于如何构建知识图谱,因为知识图谱的构建是整个知识图谱领域的一个非常核心且基础的工程,如何将现有的数据以…

神经复杂系统前沿:关于认知大脑的两种观念

来源: 集智俱乐部作者:David L. Barack, John W. Krakauer译者:JawDrin审校:陈贺 编辑:邓一雪 导语人类的高级认知能力怎样从包含上百亿神经元的大脑复杂系统中涌现出来,是神经科学的核心问题之一。学界中存…

斯坦福大学CS520知识图谱系列课程学习笔记:第三讲高级的知识图谱是什么样的

这一讲的主题是:一些高级的知识图谱是什么样的。三位讲者分别从他们各自带领的团队构建出来的高质量的知识图谱实例出发,从中我们可以认识到一些大佬们构建的优秀的知识图谱产品有哪些特点和优势,从中对我们自己构建知识图谱也可以得到一定的…

人工智能与量子计算在新型忆阻器中的融合

EQUINOX GRAPHICS/UNIVERSITY OF VIENNA来源:IEEE电气电子工程师近年来,计算在两个主要方面取得了进展:机器学习的突破,开发出了可根据经验自动改进的算法;量子计算机的研究,从理论上证明了量子计算机比任何…

第一个关于中式菜谱的智能问答机器人小程序正式上线啦

为了满足大家对菜品烹饪的各类问题能直接得到答案的需求,我开发了目前第一个真正关于菜谱的智能问答系统,并在微信小程序发布上线。这套系统支持对于8600多种菜品的问答功能,并能实现快速问答响应,整套系统后端依托于搭建的中式菜…

数学在自然科学中不可思议的有效性

来源:数学争鸣作者:尤金维格纳翻译:鲍永成 校对:袁向东数学在自然科学中不合理的有效性1959年5月11日在纽约大学Courant数学科学讲座上的讲演作者简介:尤金维格纳(Eugene P. Wigner)美国物理学…

已嵌入微信公众号内的小图聊天机器人介绍和使用说明

小图是一个融合常识与专业知识的智能聊天机器人,进入“人工智能遇上知识图谱”公众号,并在聊天窗口中发送消息就可以开始聊天,同时支持多轮多对话,小图能够提供闲聊、生活服务咨询、智能助手、休闲娱乐、文艺女青年等17种对话聊天…

图像预训练模型的起源解说和使用示例

来源:Deephub Imba三十多年来,许多研究人员在图像识别算法和图像数据方面积累了丰富的知识。如果你对图像训练感兴趣但不知道从哪里开始,这篇文章会是一个很好的开始。这篇文章简要介绍了过去的演变,并总结了现在的一些热门话题。…

介绍一些知识图谱的实际应用类项目

目前已经有很多方法来构建知识图谱,在实际项目中,我们更加关注可以用构建好的知识图谱来干些什么,因此,我找到了网上一些对于当前知识图谱的应用的介绍,分享给大家。 1 国内外知识图谱项目 国外: 常识知…

语言生成类人工智能如何改变科学

来源:ScienceAI编辑 :萝卜皮密歇根大学安娜堡分校新兴技术治理专家 Shbita Parthasarathy 表示,从大量文本中生成流利语言的机器学习算法可能会改变科学研究的方式,但不一定会变得更好。在2022 年 4 月 27 日发布的一份报告中&…

美国最牛的100个AI团队在哪里?

来源:Forbes撰文:海外来电图片:海外来电AI领域的关键玩家都有谁?企业为了保持竞争优势,需要快速有效地扩大人工智能(AI)能力。而Vectice最新一份报告,列出了100家公司拥有增长最快的…

介绍几个专门面向中文的命名实体识别和关系抽取工具

知识图谱已经在人工智能的各个领域发挥越来越重要的作用,例如视觉问答、对话系统、推荐系统等。知识图谱构建是应用这些知识图谱的基础,而面对生活和企业中数据的爆发式增长,自动化知识图谱构建显得越来越重要。从非结构化文本中自动抽取三元…

一文梳理类脑计算的前世今生 | 中科院自动化所研究员李国齐

来源:智源社区整理:王光华编辑:李梦佳导读:众所周知,人类大脑活动是复杂而连续的动力学过程,其复杂程度远超当前算力资源所能模拟的上限。大脑约有1000亿个神经元,100万亿个突触,单个…

常识推理相关最新研究进展

以深度学习为代表的智能感知技术已经取得了突破性进展,并已在各行各业产生了巨大的价值。目前,人工智能的研究领域已经逐渐从感知智能向认知智能领域过渡,其中,深度学习无法解决的一个主要问题是常识推理问题。常识知识是人类智能…

全球半导体厂商TOP 10

来源:数据观综合编辑:蒲蒲近日,IC Insights 分析了全球主要半导体供应商(不含纯代工厂)的市场份额,并公布排名前十的半导体厂商排名。从分析情况来看,全球半导体市场份额越来越集中于排名靠前的…

常识知识在AI不同领域应用的最新研究进展

上期,我们一起学习了常识推理的最新研究进展。这次,我们一起来看看常识知识在AI不同的领域都有哪些应用,泽宇找到几篇最新或有代表性的研究和大家分享学习。 Commonsense Knowledge Aware Conversation Generation with Graph Attention Aut…

MIT 团队的新测试,将 AI 推理与人类思维进行比较

来源:ScienceAI编辑:萝卜皮人工智能获得洞察力和做出决策的方式通常是神秘的,这引发了人们对机器学习的可信度的担忧。现在,在一项新研究中,研究人员揭示了一种新方法,用于比较人工智能软件的推理与人类推理…