深度学习(Deep Learning)

知识关键点 1. 人工智能、深度学习的发展历程

2. 深度学习框架

3. 神经网络训练方法

4. 卷积神经网络,卷积核、池化、通道、激活函数

5. 循环神经网络,长短时记忆 LSTM、门控循环单元 GRU

6. 参数初始化方法、损失函数 Loss、过拟合

7. 对抗生成网络 GAN

8. 迁移学习 TL

9. 强化学习 RF

10. 图神经网络 GNN

一、算法和场景融合理解 1. 空间相关性的非结构化数据,CNN 算法。典型的图像数据,像素点之间具有空间相关性,例如图像的分类、分割、检测都是 CNN 算法。

2. 时间相关性的非结构化数据,RNN 算法。这类场景普遍的一个现象就是数据之间具有时序相关性,也就是数据之间存在先后依赖关系。例如自然语言处理、语音相关算法都是基于 RNN 算法。

3. 非欧氏数据结构, GNN。这类场景典型的可以用图来表示。例如社交网络等。 案例摘要讲解

医疗领域:如流行疾病、肿瘤等相关疾病检测

遥感领域:如遥感影像中的场景识别

石油勘探:如石油油粒大小检测

轨道交通:如地铁密集人流检测

检测领域:如故障检测

公安领域:如犯罪行为分析

国防领域:目标检测、信号分析、态势感知…

经济领域:如股票预测

二、数据理解及处理 分析典型场景中的典型数据,结合具体的算法,对数据进行处理 1. 结构化数据,如何对数据进行读取,进行组织。

2. 图像数据,在实际应用过程中的处理方法,怎样做数据的预处理、进行数据增强等。

3. 时序信号,将单点的数据如何组合成一个序列,以及对序列数据处理的基本方法。

三、技术路径设计 针对具体的场景设计特定的神经网络模型,对典型数据适配的网络结构进介绍。 1.DNN 模型搭建的基本原则

2.CNN 模型中常见的网络结构,以及参数分析。

3.RNN 中支持的一些基本算子,如何对序列数据进行组织。

四、模型验证及问题排查 简单的算法或者模型对典型的场景进行快速验证,并且针对一些频发的问题进行讲解。 1. 模型收敛状态不佳

2. 分类任务重最后一层激活函数对模型的影响

五、高级 - 模型优化的原理 不同的模型需要采用的优化函数以及反向传播中参数的优化方法 1. 模型优化的算法介绍,基于随机梯度下降的算法介绍。

2. 不同场景适应的损失函数介绍。

3. 针对典型场景的反向传播梯度的推到过程。

六、高级 - 定制化思路 结合往期学员的一些项目,简单介绍一下解决一个具体问题的思路。 遥感成像中,地块农作物种类的识别。

实操解析与训练

第一阶段:

神经网络实践 实验:神经网络

1. 神经网络中基本概念理解:epoch、batch size、学习率、正则、噪声、激活函数等。

2. 不同的数据生成模型、调整网络参数、调整网络规模

3. 神经网络分类问题

4. 不同数据特征的作用分析、隐含层神经元数目

5. 过拟合

高频问题:

1. 输入数据与数据特征 2. 模型设计的过程中的参数与功能的关系。

关键点:

1. 掌握神经网络的基本概念 2. 学会搭建简单的神经网络结构

3. 理解神经网络参数

实操解析与训练

第二阶段:

深度学习三种编程思想 实验:Keras 实践

1. 理解 Keras 基本原理 2. 学会 Keras 编程思想

3. 三种不同的深度神经网络构建编程方式

4. 给定数据集,采用 Keras 独立完成实际的工程项目

高频问题:

1. 如何编程实现深度神经网络 2. 三种开发方式的具体使用

关键点:

1. 掌握 Keras 编程思想 2. 采用三种不同方式编写深度神经网络

实操解析与训练

第三阶段:CNN 实践 实验:图像分类

1. 使用 CNN 解决图像分类问题 2. 搭建 AlexNet 3.VGG16/19

4.GoogleNet 5.ResNet

高频问题:

1.CNN 更复杂的模型在哪里可以找到代码

关键点:

1. 使用卷积神经网络做图像分类 2. 常见开源代码以及适用的问题

实验:视频人物行为识别

1. 基于 C3D 的视频行为识别方法 2. 基于 LSTM 的视频行为识别方法

3. 基于 Attention 的视频行为识别方法

高频问题:

1.2D 卷积与 3D 卷积 2. 视频的时空特征

关键点:

1.C3D 网络的构建 2.Attention 机制

实操解析与训练

第四阶段:

R-CNN 及 YOLO 实践 实验:目标检测

1. 目标检测发展现状及代表性方法

2. 两阶段目标检测方法:R-CNN 系列模型

3. 一阶段目标检测方法:YOLO 系列模型

高频问题:

1. 提名与分类 2.BBOX 实现策略 3.YOLO Loss 函数

关键点:

1. 提名方法 2.ROI Pooling 3.SPP Net 4.RPN 5.YOLO

实操解析与训练

第五阶段:

RNN 实践 实验:股票预测

1. 股票数据分析 2. 同步预测 3. 异步预测

高频问题:

1. 历史数据的使用

关键点:

1. 构建 RNN 2. 采用 Keras 编程实现

实操解析与训练八

第六阶段:

Encoder-Decoder 实践 实验:去噪分析

1. 自编码器 2. 去噪自编码器

高频问题:

1. 噪声的引入与去除

关键点:

1. 设计去噪自编码器

实验:图像标题生成

结合计算机视觉和机器翻译的最新进展,利用深度神经网络生成真实的图像标题。

1. 掌握 Encoder-Decoder 结构 2. 学会 Seq2seq 结构

3. 图像 CNN + 文本 RNN 4. 图像标题生成模型

高频问题:

1. 如何能够根据图像生成文本?

关键点:

1. 提取图像特征 CNN,生成文本 RNN 2. 构建 Encoder-Decoder 结构

实操解析与训练

第七阶段:

GAN 实践 实验:艺术家作品生成

1. 生成对抗网络原理 2.GAN 的生成模型、判别模型的设计

高频问题:

1. 生成模型与判别模型的博弈过程

关键点:

1. 掌握 GAN 的思想与原理 2. 根据需求学会设计生成模型与判别模型

实操解析与训练

第八阶段:

强化学习实践 实验:游戏分析

1. 游戏场景分析 2. 强化学习的要素分析 3. 深度强化学习

高频问题:

1.DNN 与 DQN 2. 探索与利用

关键点:

1. 深度强化学习的原理 2. 根据实际需求,设计深度强化学习模型

实操解析与训练

第九阶段:

图卷积神经网络实践 实验:社交网络分析

1. 图神经网络的原理 2. 图卷积神经网络的思想

3. 设计图卷积神经网络进行社交网络分析

高频问题:

1. 如何从图神经网络的原理转化到实际编程

关键点:

1. 掌握图神经网络原理 2. 图卷积神经网络编程实现

实操解析与训练

第十阶段:

Transformer 实践 实验:基于 Transformer 的对话生成

1. Transformer 原理 2. 基于 Transformer 的对话生成

3. 基于 Transformer 的应用

高频问题:

1. 如何应用自注意力机制 2. 如何应用于自然语言处理与计算机视觉

关键点:

1.self-Attention 机制 2.position

学习和关注人工智能技术与咨询,了解更多资讯!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481664.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

​Science:灵长类前额叶皮质进化图谱

来源:brainnews相比其它物种,包括亲缘关系非常近的灵长类,我们人类进化出了高级的认知和复杂的社会行为。毋庸置疑,人类大脑是这一切独特变化的中心,而其中的前额叶皮质又格外的引人注目。灵长类的前额叶皮质跟其他物种…

基于深度学习的机器人目标识别和跟踪

如今,深度学习算法的发展越来越迅速,并且在图像处理以及目标对象识别方面已经得到了较为显著的突破,无论是对检测对象的类型判断,亦或者对检测对象所处方位的检测,深度学习算法都取得了远超过传统机器学习算法的准确率…

国科大高级人工智能5-RNN/LSTM/GRU/集束搜索/attention

文章目录BPTTBPTT前向传播长序列循环神经网络LSTM序列到序列的模型集束搜索——近似搜索改进的集束搜索集束搜索的误差分析图到文本注意力模型序列数据建模 输入序列–>输出序列预测序列的下一项(监督) 模糊了监督和非监督 有的cnn对序列不适用&…

揭秘虚拟电厂,它究竟是如何运行的?

来源:新浪科技(ID:techsina)作者:刘丽丽编辑 :韩大鹏与电力调度相关的虚拟电厂再次引发市场关注。日前,国内首家虚拟电厂管理中心深圳虚拟电厂管理中心揭牌,国内虚拟电厂迈入了快速发展新阶段。…

国科大高级人工智能6-GAN

文章目录生成式模型的基础:极大似然估计GANs最终版本问题非饱和博弈DCGAN不同类型的GANconditional GAN无监督条件GAN--cycle GAN对抗学习https://blog.csdn.net/suyebiubiu/category_9372769.html生成式模型的基础:极大似然估计 θ∗argmaxθExpdatalog…

为什么量子力学总是让人感到疑惑?

来源:中科院物理所作者:Paul Austin Murphy翻译:Nothing审校:藏痴我们认为量子粒子很奇怪的主要问题是将量子粒子视为经典粒子而它们的行为却表现得非常非经典。(或者,问题是将量子粒子视为“物体”&#x…

国科大高级人工智能7-命题逻辑

文章目录命题逻辑(语法Syntax)由枚举推理(inference by enumeration区别deduction(形式推演,演绎)作业(定理证明)logics:逻辑,表达信息的形式语言 语法syntax 语义semantics 逻辑…

费爱国院士:中国城市大脑已走在世界前沿,但仍需努力

信息来源:网易科技2022年9月1日,中国指挥与控制学会在京召开《城市大脑首批标准新闻发布会》正式发布《城市大脑 术语》、《城市大脑顶层规划和总体架构》;《城市大脑数字神经元基本规定》等三项团体标准,学会理事长,工…

国科大高级人工智能8-归结原理和horn子句

只有一条规则的推理 resolution(消解,归结) CNF(conjunction normal form合取范式 (A∨B)∧(B∨C)(A∨B)∧(B∨C)(A∨B)∧(B∨C)任何逻辑式都可转化为语义等价的CNF resolution消解(推理规则&…

国科大高级人工智能9-模糊数学和遗传算法

文章目录1.模糊计算笛卡尔积、关系模糊集连续的隶属度函数运算2.evolution 遗传算法1.模糊计算 why模糊 取得精确数据不可能或很困难没有必要获取精确数据 模糊性概念:对象从属的界限是模糊的,随判断人的思维而定 不同人的界定标准不一样 隶属函数&…

周宏仁详解智能革命:“人类不可能瞬间无处不在,但软件可以!”

来源:域名国家工程研究中心 ZDNS“最优秀的人类战斗员也无法抵御以超音速飞行、由人工智能跨地域组织、每秒机动数千次的多台作战装备。人类不可能瞬间无处不在,但软件可以。”近日,信息化百人会顾问、原国家信息化专家咨询委员会常务副主任周…

图灵奖得主Jack Dongarra:高性能计算与AI大融合,如何颠覆科学计算

来源: 智源社区整理:王光华编辑:李梦佳导读:浩瀚的宇宙中两个星云不断彼此接近、融合、再爆炸,这样奇幻的天文景观正是采用高性能计算(HPC)进行建模仿真生成的。在过去的三十年间,高…

国科大高级人工智能10-强化学习(多臂赌博机、贝尔曼)

文章目录多臂赌博机Multi-armed bandit(无状态)马尔科夫决策过程MDP(markov decision process1.动态规划蒙特卡罗方法——不知道环境完整模型情况下2.1 on-policy蒙特卡罗2.2 off-policy蒙特卡罗时序差分方法强化学习:Reinforcement learning…

《Science》封面:华大基因领导构建了世界上第一张大脑再生的时空地图

来源:生物通由华大基因研究院领导的多所研究团队使用华大基因Stereo-seq技术,构建了世界上第一个蝾螈(Ambystoma mexicanum)大脑发育和再生的时空细胞图谱,揭示了脑损伤如何自我愈合。这项研究发表在最新一期的《Science》杂志的封面故事上。…

国科大高级人工智能12-博弈

这里写自定义目录标题欢迎使用Markdown编辑器新的改变功能快捷键合理的创建标题,有助于目录的生成如何改变文本的样式插入链接与图片如何插入一段漂亮的代码片生成一个适合你的列表创建一个表格设定内容居中、居左、居右SmartyPants创建一个自定义列表如何创建一个注…

科研进展 | 脑智卓越中心揭示神经元与胶质细胞互作参与胶质细胞命运决定的机制...

来源:中科院神经所神经元细胞与胶质细胞是神经系统最主要的两个细胞分类。在神经发育过程中,神经元类型先产生(“神经发生”,neurogenesis),胶质细胞后产生(“胶质发生”,gliogenesi…

国科大高级人工智能-总结

文章目录1.概论2. 搜索A\*最优性三个传教士与野人3.神经网络RBM DBN DBM hopfield比较结构及特性逐层贪婪训练与CDBPGAN4.逻辑一个永远无法归结结束的FOL合取范式规范化归结原理4.1resolution是完备的、可靠的Modus ponens4.1 蕴含与包含的证明蕴含与implication的关系5. 模糊数…

Science封面:全球首个脑再生时空图谱

来源:brainnews报道来源:作者团队原文链接:https://doi.org/10.1126/science.abp9444为了深入研究墨西哥钝口螈端脑再生的细胞和分子机制,并探讨其与发育的关系,研究人员收集了不同损伤再生阶段(7个再生阶段…

国科大prml10-无监督学习

文章目录1.监督学习与无监督学习2. 聚类分析2.1簇的其他区别2.2类型2.2.1 基于中心的簇2.2.2 基于连续性的簇2.2.3 基于密度的簇2.2.4 基于概念的簇2.3 应用2.4 三要素3.距离函数3.1 距离函数的要求3.2标准化3.3其他相似、不相似函数4.评价指标4.1外部指标(有参考模…

英伟达、AMD 高端芯片断供,国产芯片如何迅速崛起

来源:大数据文摘转载自AI科技大本营整理:苏宓出品:CSDN8 月 31 日,据外媒 Protocol、路透社等多家报道,美国开始对出口人工智能相关应用所需的先进芯片施加新的限制,其中 AMD、NVIDIA(英伟达&am…