Gary Marcus:文本生成图像系统理解不了世界,离 AGI 还差得远

89c21ca839e1f14e9bd80a0800d5cf24.jpeg

来源:AI科技评论

作者:李梅、黄楠

编辑:陈彩娴

 AI 作画很牛,但它并不理解图像背后的世界。

自从 DALL-E 2 问世以来,很多人都认为,能够绘制逼真图像的 AI 是迈向通用人工智能(AGI)的一大步。OpenAI 的 CEO  Sam Altman 曾在 DALL-E 2 发布的时候宣称“AGI is going to be wild”,媒体也都在渲染这些系统对于通用智能进展的重大意义。

但真的是如此吗?知名 AI 学者(给 AI 泼冷水爱好者) Gary Marcus 表示“持保留意见”。

最近,他提出,在评估 AGI 的进展时,关键要看像 Dall-E、Imagen、Midjourney 和 Stable Diffusion 这样的系统是否真正理解世界,从而能够根据这些知识进行推理并进行决策。

在判断这些系统之于 AI (包括狭义和广义的 AI)的意义时,我们可以提出以下三个问题:

  1. 图像合成系统能否生成高质量的图像?

  1. 它们能否将语言输入与它们产生的图像关联起来?

  2. 它们了解它们所呈现出的图像背后的世界吗?

1

AI 不懂语言与图像的关联

在第一个问题上,答案是肯定的。区别只在于,在用 AI 生成图像这件事儿上,经过训练的人类艺术家能做得更好。

在第二个问题上,答案就不一定了。在某些语言输入上,这些系统能表现良好,比如下图是 DALL-E 2 生成的“骑着马的宇航员”:

a7b38ceadda362e1d96922233ffdfb74.jpeg

但在其他一些语言输入上,这些 AI 就表现欠佳、很容易被愚弄了。比如前段时间 Marcus 在推特上指出,这些系统在面对“骑着宇航员的马”时,难以生成对应的准确图像:

55e54936231817aeed92c75a3c1d0804.jpeg

尽管深度学习的拥护者对此进行了激烈的反击,比如 AI 研究员 Joscha Bach 认为“Imagen 可能只是使用了错误的训练集”,机器学习教授 Luca Ambrogioni 反驳说,这正表明了“Imagen 已经具有一定程度的常识”,所以拒绝生成一些荒谬的东西。

24d3c380d962e2c95911304ead973c63.jpeg

还有一位谷歌的科学家 Behnam Neyshabur 提出,如果“以正确的方式提问”,Imagen 就可以画出“骑着宇航员的马”:

453f5fc44e84d3812b1b384c4c0c63fa.jpeg

但是,Marcus 认为,问题的关键不在于系统能否生成图像,聪明的人总能找到办法让系统画出特定的图像,但这些系统并没有深刻理解语言与图像之间的关联,这才是关键。

2

不知道自行车轮子是啥

怎么能称是AGI?

系统对语言的理解还只是一方面,Marcus 指出,最重要的是,判断 DALL-E 等系统对 AGI 的贡献最终要取决于第三个问题:如果系统所能做的只是以一种偶然但令人惊叹的方式将许多句子转换为图像,它们可能会彻底改变人类艺术,但仍然不能真正与 AGI 相提并论,也根本代表不了 AGI。

让 Marcus 对这些系统理解世界的能力感到绝望的是最近的一些例子,比如平面设计师 Irina Blok 用 Imagen 生成的“带有很多孔的咖啡杯”图像:

4c62ce1203671343a3b8fde2caf8abfe.jpeg

正常人看了这张图都会觉得它违反常识,咖啡不可能不从孔里漏出来。类似的还有:

“带有方形轮子的自行车”

1f5030d31586ce1f4885d357bda527f3.jpeg

“布满仙人掌刺的厕纸”

60e2bbbf3c4bb3dde06c85c16c7ce3fd.jpeg

说“有”容易说“无”难,谁能知道一个不存在的事物应当是什么样?这也是让 AI 绘制不可能事物的难题所在。

但又或许,系统只是“想”绘制一个超现实主义的图像呢,正如 DeepMind 研究教授 Michael Bronstein 所说的,他并不认为那是个糟糕的结果,换做是他,也会这样画。

2fd5255258cdebd6f1d984f8113c4494.jpeg

那么如何最终解决这个问题呢?Gary Marcus 在最近同哲学家 Dave Chalmers 的一次交谈中获得了新的灵感。

为了了解系统对于部分和整体、以及功能的认识, Gary Marcus 提出了一项对系统性能是否正确有更清晰概念的任务,给出文本提示“Sketch a bicycle and label the parts that roll on the ground”(画出一辆自行车并标记出在地面上滚动的部分),以及“Sketch a ladder and label one of the parts you stand on”(画出一个梯子并标记出你站立的部分)。

这个测试的特别之处在于,并不直接给出“画出一辆自行车并标记出轮子”、“画出一个梯子并标记出踏板”这样的提示,而是让 AI 从“地面上滚动的部分”、“站立的部分”这样的描述中推理出对应的事物,这正是对 AI 理解世界能力的考验。

但 Marcus 的测试结果表明,Craiyon(以前称为 DALL-E mini)在这种事情上做得一塌糊涂,它并不能理解自行车的轮子和梯子的踏板是什么:

ef10113f77dc718ec39b0976e9efd7c3.jpeg

5bad8d84d295daa7430c92b56053388a.jpeg

那么这是不是 DALL-E Mini 特有的问题呢?

Gary Marcus 发现并不是,在目前最火的文本生成图像系统 Stable Diffusion 中也出现了同样的结果。

比如,让 Stable Diffusion “画一个人,并把拿东西的部分变成紫色”(Sketch a person and make the parts that hold things purple),结果是:

d10e7cb715198443639db3df6edfb3fb.jpeg

显然,Stable Diffusion 并不理解人的双手是什么。

而在接下来的九次尝试中,只有一次成功完成(在右上角),而且准确性还不高:

991e1e937e42322c7e6613551f2afe6b.jpeg

下一个测试是,“画出一辆白色自行车,并将用脚推动的部分变成橙色”,得到图像结果是:

2779501a1badaea78f2b691d0c1d2081.jpeg

所以它也不能理解什么是自行车的脚踏板。

而在画出“自行车的草图,并标记在地面上滚动部分”的测试中,其表现得也并没有很好:

52c0b98e46f451fe04be1e279f2a4408.jpeg

如果文本提示带有否定语,比如“画一辆没有轮子的白色自行车",其结果如下:

09bad6978c390266ec334cb477136a30.jpeg

这表明系统并不理解否定的逻辑关系。

即便是“画一辆绿色轮子的白色自行车”这样简单的只关注部分与整体关系提示,而且也没有出现复杂的语法或功能等,其得到的结果仍存在问题:

49179d380566af2933ead1bb341e21ef.jpeg

因此,Marcus 质问道,一个并不了解轮子是什么、或是它们的用途的系统,能称得上是人工智能的重大进步么?

今天,Gary Marcus 还针对这个问题发出了一个投票调查,他提出的问题是,“Dall-E 和 Stable Diffusion 等系统,对它们所描绘的世界到底了解有多少?”

其中,86.1% 的人认为系统对世界的理解并不多,只有 13.9% 的人认为这些系统理解世界的程度很高。

9f626f643bf6781fc21f11cee7b6d363.jpeg

对此,Stability.AI 的首席执行官 Emad Mostique 也回应称,我投的是“并不多”,并承认“它们只是拼图上的一小块。”

791633d0c54a33b39b1cad631c626688.jpeg

来自科学机构 New Science 的 Alexey Guzey 也有与 Marcus 类似的发现,他让 DALL-E 画出一辆自行车,但结果只是将一堆自行车的元素堆在一起。

744eb1524ff6df477c9daae9c7a82af4.jpeg

所以他认为,并没有任何能真正理解自行车是什么以及自行车如何工作的模型,生成当前的 ML 模型几乎可以与人类媲美或取代人类是很荒谬的。

大家怎么看?

参考链接:

https://garymarcus.substack.com/p/form-function-and-the-giant-gulf

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

4ee88662d2324612a812f7ef615dd55c.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481579.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

论文学习11-Adversarial training for multi-context joint entity and relation extraction(实体关系买抽取模型,对抗学习

文章目录1. introduction2.相关工作3.Model3.1 Joint learning as head selection3.2 AT4.实验设置5.结果6.总结实体关系抽取模型对抗学习. 论文链接 code Bekoulis, G., et al. (2018). “Adversarial training for multi-context joint entity and relation extraction.” ar…

【前沿技术】美国脑计划2.0!投5亿美元,绘制史上最全人脑地图

来源:智能研究院【新智元导读】今天,脑科学计划宣布启动的「细胞图谱网络项目」,目标是绘制世界上最全面的人类大脑细胞图谱。这种雄心,堪比当年的人类基因组计划。今天,美国国立卫生研究院(NIH&#xff09…

HMM总结

文章目录4.HMM-->CRF4.1 HMM--是个序列4.1.1 推断问题(evaluate)4.1.2 viterbi decoding解码4.1.3 学习,参数估计4.1.4计算实例4.1.5 EM(baum-welch算法)的上溢出和下溢出概率图模型code4.HMM–>CRF 4.1 HMM–是个序列 x-观测到的条件…

南科大本科生在《物理评论快报》发文,实现由不定因果序驱动的量子冰箱

来源:FUTURE远见选编:FUTURE | 远见 闵青云 近日,南方科技大学物理系师生在实验中实现了由不定因果序驱动的量子冰箱。相关成果以「Experimental realization of a quantum refrigerator driven by indefinite causal orders」为题发表在《物…

论文学习12-Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data(CRF

文章目录abstract1.introduction1.2 条件模型2.标签偏差问题3.CRF提出条件随机场CRF abstract 我们提出了条件随机场,这是一个建立概率模型来分割和标记序列数据的框架。相对于隐马尔可夫模型和随机语法,条件随机场在这类任务中有几个优势,…

杨振宁六大数理工作赏析 | 祝贺杨先生百岁华诞

来源:返朴撰文:林开亮我的物理学界同事大多对数学采取功利主义的态度。也许因为受我父亲的影响,我较为欣赏数学。我欣赏数学家的价值观,钦佩数学的优美和力量:它既有战术上的随机应变,又有战略上的深谋远虑…

论文学习13Reconstructing the house from the ad: Structured prediction on real estate classifieds(实体关系抽取)

文章目录abstractIntroduction2. 相关工作3.房地产结构预测3.1问题形式化3.2 结构预测模型3.2.1 序列标注问题3.2.2 part-of tree constructLocally trained model (Threshold/Edmonds)Globally trained model (MTT)Transition-based dependency parsing (TB)4.实验5.pipeline总…

优化|深度学习或强化学习在组合优化方面有哪些应用?

来源:图灵人工智能前 言深度强化学习求解组合优化问题近年来受到广泛关注,是由于其结合了强化学习(Reinforcement learning)强大的决策(decision-making)能力和深度学习(deep learning)的各种模型(RNN、Transformer、GNN等等)强大的信息提取表征能力(r…

论文学习14-End-to-End Relation Extraction using LSTMs on Sequences and Tree Structures(端到端实体关系抽取)

文章目录abstract1.introduction2.相关工作3.model3.1嵌入层3.2 序列层3.3实体检测3.4 依赖层3.5 Stacking Sequence and Dependency Layers3.6关系分类3.7 训练4 实验总结本文:Miwa, M. and M. Bansal “End-to-End Relation Extraction using LSTMs on Sequences …

人工智能在基因组学市场增长机会以及整个基因组学领域的最新技术

来源:ScienceAI编译:萝卜皮人工智能等最新技术浪潮已经触及几乎所有行业和企业的海岸。基因组学领域也不例外。在 2020-2030 年的评估期内,最新技术在基因组学领域的日益普及将被证明是基因组学市场人工智能的主要增长贡献者。基因组学可以定…

论文学习15-Table Filling Multi-Task Recurrent Neural Network(联合实体关系抽取模型)

文章目录abstract1 introduction2.方 法2.1实体关系表(Figure-2)2.2 The Table Filling Multi-Task RNN Model2.3 Context-aware TF-MTRNN model2.4 Piggybacking for Entity-Relation Label Dependencies2.5 Ranking Bi-directional Recurrent Neural Network (R-biRNN)3.Mode…

【Brain】大脑里也有个Transformer!和「海马体」机制相同

来源: 墨玫人工智能【导读】Transformer模型性能强的原因是模拟了人脑?我不能创造的,我也不理解。——费曼想要创造人工智能,首先要理解人类的大脑因何有智能。随着神经网络的诞生及后续的辉煌发展,研究者们一直在为神…

CRF总结

文章目录计算下Z(矩阵)1.1 一般参数形式1.2 简化形式Z1.3 矩阵形式1.3.2 Z2.维特比算法3.前向算法4.后向算法5.使用前向后向的概率计算6.期望计算7.参数估计(学习)7.1 梯度上升参考文献CRF 是无向图模型code 它是一个判别式模型建…

CAAI名誉理事长李德毅院士谈机器的生命观

来源:图灵人工智能2022年9月28日上午,为促进人工智能产、学、研、经、用的发展,助力余杭区人民政府建设杭州市人工智能创新发展区,由中国人工智能学会主办的会士系列讲坛—第一期通过线上的形式在余杭区未来科技城成功举办。本次活…

论文学习16-Going out on a limb: without Dependency Trees(联合实体关系抽取2017)

文章目录abstract1. Introduction2. 相关工作3. Model3.1 Multi-layer Bi-directional Recurrent Network3.2实体检测3.3 attention model3.4 关系检测3.5双向编码4.训练5.实验5.2 evaluation metrics5.3 基线和以前的模型5.4 超参数6.结果Katiyar, A. and C. Cardie (2017). G…

困局中的英伟达:进一步是鲜花,退一步是悬崖

来源: AI前线整理:王强、冬梅看看最近几个月的股价,英伟达的投资者肯定不怎么开心:但如果把时间拉长到 5 年,我们看到的故事似乎又不一样了:2020 年底显然是是一个转折点。很多游戏玩家还清楚地记得&#x…

论文学习17-Global Normalization of Convolutional Neural Networks(联合实体关系抽取CNN+CRF)2017

文章目录abstract1.Introduction2.相关工作3.Model全局归一化层(使用线性链CRF)4.实验和分析4.3实验结果总结Adel, H. and H. Schtze “Global Normalization of Convolutional Neural Networks for Joint Entity and Relation Classification.”abstract CNNCRF&g…

特斯拉AI日点不燃仿人机器人的市场热情

来源:科技智谷编辑:Light"仿人机器人的巨大市场蓝海能否兑现,核心还要看产品量产和成本控制。近期,沉寂已久的仿人机器人市场终于迎来了它的“春晚”——特斯拉AI日。根据外媒报道,在9月30日(北京时间…

LSTM(序列标注,自实现)

文章目录1.LSTM1.1 单独计算单层LSTM-cell单层LSTMBPTT2.序列标注使用pytorch实现序列标注自实现lstmimport torchimport torch.nn as nndef prepare_sequence(seq, to_ix):idxs [to_ix[w] for w in seq]return torch.tensor(idxs, dtypetorch.long)training_data [("Th…

Science最新:Jeff Gore团队揭示复杂生态系统中涌现的相变

来源:集智俱乐部作者:胡脊梁编辑:邓一雪导语生态学致力于理解自然生态系统中的多样化的物种和复杂的动力学行为,然而科学家长期缺乏描述和预测生物多样性和生态动力学的统一框架。MIT物理系的胡脊梁和Jeff Gore等科学家结合理论和…