AI再卷数学界,DSP新方法将机器证明成功率提高一倍

63a079ae4b57b74f7092f039031bbc9f.jpeg

来源:机器之心编

谷歌的吴宇怀 (Yuhuai Tony Wu)等研究者设计了一种叫做「Draft, Sketch, and Prove」 (DSP)的新方法将非形式化的数学证明转化为形式化的证明。实验结果显示,自动证明器在 miniF2F 上解决的问题比例从 20.9% 提高到了 38.9%。

自动证明数学定理是人工智能的一个初衷,也是一直以来的难题。到目前为止,人类数学家使用了两种不同的方式来书写数学。

第一种是大家都熟悉的方式,即用自然语言来描述数学证明。大部分的数学都是以这种方式书写的,这包括数学课本,数学论文,等等。

第二种称之为形式化数学(formal mathematics)。这是近半个世纪计算机科学家创造的,用来检验数学证明的一种工具。

如今看来,计算机可以被用来验证数学证明,但它们只有在使用专门设计的证明语言时才能做到这一点,而无法处理数学符号和数学家使用的书面文本的混合体。如果把用自然语言编写的数学问题转换为形式化代码,让计算机更容易解决它们,或许能够帮助构建能探索数学新发现的机器。这个过程被称为形式化(formalisation),自动形式化(autoformalization)指的是自动从自然语言数学翻译成形式化语言的任务。

形式化证明的自动化是一项具有挑战性的任务,深度学习方法在该领域尚未大获成功,这主要是因为形式化数据的稀缺。事实上,形式化证明本身是非常困难的,且只有少数专家能做到,这使得大规模的注释工作并不现实。最大的形式化证明语料库是用 Isabelle 代码 (Paulson, 1994) 编写的,大小不到 0.6GB,比视觉或自然语言处理中常用的数据集小几个数量级。为了解决形式证明的稀缺性,以往的研究提出使用合成数据、自监督或强化学习来合成额外的形式化训练数据。虽然这些方法在一定程度上缓解了数据的不足,但都无法将大量人工撰写的数学证明充分利用起来。

我们以语言模型 Minerva为例。当在足够多的数据训练之后,我们发现它的数学能力非常强,可以在高中数学测试中拿到高于平均分水平。然而这样的语言模型也有不足,它只能模仿,而不能自主训练而提高数学水平。形式化证明系统提供了一个训练环境,但形式化数学的数据非常少。

与形式化的数学不同,非形式化的数学数据是丰富和广泛可用的。最近,在非形式化数学数据上训练的大型语言模型展示了令人印象深刻的定量推理能力。然而,它们经常产生错误的证明,而自动检测这些证明中的错误推理是很有挑战性的。

在最近的一项工作中,谷歌的吴宇怀 (Yuhuai Tony Wu)等研究者设计了一种叫做 DSP(Draft, Sketch, and Prove )的新方法,将非形式化的数学证明转化为形式化的证明,从而同时具备形式化系统提供的逻辑严谨性和大量的非形式化数据。

b4d0fa1aa05d3dc587ff5abab084b27c.jpeg

论文链接:https://arxiv.org/pdf/2210.12283.pdf

今年早些时候,吴宇怀与几位合作者使用了 OpenAI Codex 的神经网络进行自动形式化工作,证明了用大型语言模型将非形式化语句自动翻译成形式化语句的可行性。DSP 则更进一步,利用大型语言模型从非形式化证明中生成形式化证明草图。证明草图由高层次的推理步骤组成,可以由交互式定理证明器这样的形式化系统来解释。它们与完整的形式化证明不同,因为它们包含无理由的中间猜想的序列。在 DSP 的最后一步,形式化证明草图被阐述为一个完整的形式化证明,使用一个自动验证器来证明所有中间猜想。

吴宇怀表示:现在,我们展示了 LLM 可以将其生成的非形式化证明转化为经过验证的形式化证明!

c32bf46335125374e3b89514922c5906.jpeg

方法

方法部分描述了用于形式化证明自动化的 DSP方法,该方法利用非形式化证明来指导自动形式化定理证明器的证明草图。这里假设每个问题都有一个非形式化命题和一个描述该问题的形式化命题。整体 pipeline 包括三个阶段(如图 1 所示)。

d5b87d4e6c547562c1676b06aa86ae6a.jpeg

图 1.

非形式化证明的起草

DSP 方法的初始阶段,包括根据问题的自然数学语言描述(可能用 LATEX)为其寻找非形式化证明。由此产生的非形式化证明被看作是后续阶段的草稿。在数学教科书中,一般都会提供定理的证明,但有时会缺失或不完整。因此,研究者考虑了与非形式化证明的存在或不存在相对应的两种情况。

在第一种情况下,研究者假设有一个「真实的」非形式化证明(即由人写的证明),这是现有数学理论形式化实践中的典型情况。在第二种情况下,研究者做了一个更普遍的假设,即没有给出真实的非形式化证明,并且用一个经过非形式化数学数据训练的大型语言模型来起草证明候选。该语言模型消除了对人类证明的依赖,并能为每个问题产生多种备选解决方案。虽然没有简单的方法来自动验证这些证明的正确性,但非形式化证明只需要在下一阶段对生成一个好的形式化证明草图有用。

将非形式化证明映射为形式化草图

形式化证明草图对解决方案的结构进行编码,并撇开低层次的细节。直观地说,它是一个部分证明,概述了高层次的猜想命题。图 2 是一个证明草图的具体例子。尽管非形式化证明经常撇开低层次的细节,这些细节不能在形式化证明中排出,这使得非形式化证明到形式化证明的直接转换变得困难。相反,本文建议将非形式化证明映射到共享相同高层结构的形式化证明草图上。证明草图中缺少的低层次细节可以由自动证明器来填补。由于大型非形式化 - 形式化平行语料库不存在,标准的机器翻译方法不适合这项任务。相反,这里使用一个大型语言模型的小样本学习能力。具体来说,用了一些包含非形式化证明及其相应的形式化草图的例子对来 prompt 该模型,然后是一个有待转换的非形式化证明,然后让模型生成后续的 token,以获得所需的形式化草图。这个模型称为「自动形式化器」。

a706338d4248c424c6ebfab06ecd7a67.jpeg

图 2.

证明草图中的公开猜想

作为这个过程的最后一部分,研究者执行现成的自动证明器来填补证明草图中缺失的细节,这里的「自动证明器」是指能够产生形式上可验证的证明的系统。该框架对自动证明器的具体选择是不可知的:它可以是符号证明器(如启发式证明自动化工具)、基于神经网络的证明器或者混合方法。如果自动证明器成功地填补了证明草图中的所有空白,它就会返回最终的形式化证明,可以对照问题的规格进行检查。如果自动证明器失败(例如,它超过了分配的时间限制),则认为评估是不成功的。

实验

研究者进行了一系列实验,包括从 miniF2F 数据集中生成问题的形式化证明,并表明很大一部分定理可以用这种方法自动证明。此处研究了两种环境,其中非形式化证明是由人类写的,或者是由一个在数学文本上训练的大型语言模型起草的。这两种设置对应于现有理论形式化过程中经常出现的情况,即通常有非形式化证明,但有时作为练习留给读者,或者由于空白处的限制而缺失。

表 1 展示了在 miniF2F 数据集上发现的成功形式化证明的比例。结果包括本文实验的四条 baseline,以及带有人类编写的证明和模型生成的证明的 DSP 方法。

c2f193f29d334f85d3a923e129844dea.jpeg

可以看出,附加了 11 种启发式策略的自动证明器大大增加了 Sledgehammer 的性能,在 miniF2F 的验证集上将其成功率从 9.9% 提高到 18.0%,在测试集上从 10.4% 提高到 20.9%。两个使用语言模型和证明搜索的 baseline 在 miniF2F 的测试集上分别达到 29.9% 和 35.2% 的成功率。

基于人类编写的非形式化证明,DSP 方法在 miniF2F 的验证和测试集上取得了 42.6% 和 39.3% 的成功率。488 个问题中共有 200 个可以通过这种方式进行证明。Codex 模型和 Minerva(8B)模型在解决 miniF2F 上的问题时给出了非常相似的结果:它们都指导自动验证器分别解决了验证集和测试集上 40.6% 和 35.3% 的问题。

当切换到 Minerva(62B)模型时,成功率分别上升到 43.9% 和 37.7%。与人编写的非形式化证明相比,其在验证集上的成功率要高 1.3%,在测试集上要低 1.6%。总的来说,Minerva(62B)模型能够解决 miniF2F 上的 199 个问题,比用人编写的证明少一个。Minerva(540B)模型在 miniF2F 的验证集和测试集中分别解决了 42.6% 和 38.9% 的问题,也生成了 199 个成功的证明。

在两种情况下,DSP 方法都能有效地指导自动证明器:使用人类的非形式化证明或语言模型生成的非形式化证明。DSP 几乎将证明器的成功率提高了一倍,并在使用 Isabelle 的 miniF2F 上产生了 SOTA 性能。此外,更大的 Minerva 模型在指导自动形式化证明器方面几乎和人类一样有帮助。

如下图所示,DSP 方法显着提高了 Sledgehammer + 启发式证明器的性能(~20% -> ~40%),在 miniF2F 上实现了新的 SOTA。

Minerva 的 62B 和 540B 版本生成的证明与人类的证明非常相似。

3b33346c034eeaf0d5805231b71e4290.jpeg

更多内容,请参考原论文。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

20b34c2fa4c9a71a3f84f1b72ba217a9.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481393.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

华人数学家死磕欧拉方程10年,用计算机找到了让它失效的“奇点”

来源:金磊 发自 凹非寺量子位 | 公众号 QbitAI专研长达10年,论文足足177页。华人数学家通过计算机,找到了让著名欧拉方程失效的“奇点”。△图源:Quanta Magazine欧拉方程,是250年前(1755年)由瑞…

张益唐零点问题论文会是什么结果?

关注 哆嗒数学网 每天获得更多数学趣文最近,菲尔兹奖得主在他的一篇旧博文的评论区对张益唐关于朗道-西格尔猜想的论文进行了评论。大概意思是,论文还没被确认是正确的,因为文章已经发现的各种问题,其中一些问题还是阻碍验证的过程…

大型互联网系统架构演进,BATJ其实无需神化……

来源:云技术一、前言说到互联网系统架构,在互联网行业日渐成熟的今天,一谈到这背后的技术体系,很多人脑海中可能就会浮现从网上看到的,一个个庞大的知识图谱,能说地清楚其中一二的同学,自然是志…

AI能否改变我们发现新药的方式?哈佛医学院团队开发AI驱动的药物发现平台

编辑 | 绿萝世界人口老龄化、慢性病和传染病负担日益加重,迫切需要安全有效的药物来满足全球数十亿人的医疗需求。然而,发现一种新药并将其推向市场是一个漫长、艰巨且昂贵的过程。长期以来,人工智能(AI)一直被认为能够…

城市大脑的基本原理与战略意义分析

本文发布于2022年10月中国指挥与控制学会会刊作者:刘锋城市大脑是21世纪以互联网为核心的世界数字生态向类脑结构演化并与智慧城市结合的产物,世界统一的数字神经元将人、物、系统和组织有机的结合在一起实现万物互联,云反射弧机制实现数字神…

“史上最贵”世界杯,暗藏哪些传感器黑科技?

来源:综合来源:科技日报、IDG资本、中国日报双语新闻、感知芯视界等编辑:感知芯视界2022年卡塔尔世界杯(FIFA World Cup Qatar 2022)是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行、也是继2002年韩日世界杯之…

刘庆生:学术需要批判氛围

来源:刘庆生科学网博客链接地址:https://blog.sciencenet.cn/blog-673617-1364620.html作者:刘庆生(中国地质大学)最近在抖音上看了复旦大学特聘教授张汝伦的一个短视频。他在视频中提到,上海电视台采访一位…

斯蒂芬·沃尔夫勒姆 | 圣塔菲研究所的初创故事

来源:集智俱乐部 作者:斯蒂芬沃尔夫勒姆 数学家、物理学家、计算机科学家导语:圣塔菲研究所被誉为复杂性科学的圣地,被称为“没有围墙的研究所”,那么它是如何创建发展起来的呢?2019 年,为了纪…

为什么地球的生物都是碳基生命?科学家:大自然环境选择的结果

来源:科学的乐园地球是一个有着多达数百万种生物形式的生命世界,不管这些物种的外形有多大的差异,也不管是植物还是动物,它们都有一个共同的本质,都是碳基生命。可能有朋友会说了,生命体内最多的物质不是氧…

台积电1nm,有新进展

来源:万物智能视界中国台湾地区行政院副院长沈荣津昨日接受本台媒专访时表示,台积电1纳米新厂将落脚桃园龙潭,台积电大本营在新竹科学园区,若真的想要超前部署台湾半导体先进制程,就近选择龙潭科学园区是最理想之处&am…

除了作画、写歌、写文章,AI大模型还能帮我们做什么?

来源:AI前线随着技术的发展,AI 已经在金融、医疗、智慧城市等多个场景实现了技术落地,人们也可以将时间和精力,投入到更具有挑战性和创造性的工作中。今年,在极其需要创造力的绘画领域,随着大模型技术的不断…

最近,人工智能推进了数学研究的进程,揭示了矩阵乘法的新可能性

来源:今日头条(逻辑黑洞)当试图找到最有效的方法时,甚至像矩阵乘法这样抽象的事情也会像游戏一样。这有点像用尽可能少的步骤来解魔方。对于矩阵乘法,即使在相对简单的情况下,每一步都可以有超过10^12个选项…

钱学森:论技术科学

来源:远望智库预见未来论技术科学钱学森本文原刊载于1957年《科学通报》第3期一、科学的历史发展与技术科学概念的形成在人们从事生产的过程中,他们必然地累积了许多对自然界事物的经验。这些经验可以直接应用到生产上去,也可以先通过分析、整…

从量子到星空:混沌世界的隐藏秩序

导语1963年,洛伦兹用蝴蝶效应形象地展现出了混沌的魅力:亚马逊热带雨林中的一只蝴蝶偶尔扇动几下翅膀,可以在两周以后引起美国得克萨斯州的一场龙卷风。正所谓“失之毫厘,谬以千里”,混沌理论告诉我们,即使…

OpenFold更多细节公开:重新训练AlphaFold2对其学习机制和泛化能力产生新见解

编辑 | 萝卜皮AlphaFold2 彻底改变了结构生物学,能够以极高的准确性预测蛋白质结构。然而,它的实现缺乏训练新模型所需的代码和数据。这些对于解决新任务是必要的,例如蛋白质-配体复杂结构预测;可用于调查模型学习的过程&#xff…

李德毅院士:迭代的智能——从薛定谔、图灵和维纳谈开去

来源:图灵人工智能报告人:李德毅院士主持人:戴琼海院士报告时间:2022年11月24日(周四)19:30-21:00主办单位:北京信息科学与技术国家研究中心未来智能实验室的主要工作包括:建立AI智能…

未来产业最新动向及趋势展望

来源:赛迪智库、《赛迪前瞻》2022年第52期作者:彭健,无线电管理研究所副所长;滕学强 未来产业是代表未来科技和产业发展新方向且具有前瞻性和先导性的产业,市场潜力大、带动作用强,前瞻谋划未来产业已是大势…

AI都会和人类谈判了?Meta AI最新研究登上Science,LeCun称里程碑式成果

来源:明敏 羿阁 发自 凹非寺量子位 | 公众号 QbitAIAI都学会和人类谈判了?还能成功说服人类听它安排?话术一流到人类完全分辨不出它是AI。这就是Meta AI的最新成果——AI模型CICERO(西塞罗),现已登上Scienc…

我在 MIT 人工智能研究实验室工作一年学到的

来源:AI科技评论Mike Ferguson ,麻省理工学院大脑和认知科学系 (MIT BCS) 担任研究软件工程师/ML工程师。专门研究 Brain-Score(一种衡量类脑 AI 的工具)。他于 2021 年春季毕业于弗吉尼亚大学,获得计算机科学和应用数…

《科学》重磅:首次实现监测多种神经元间实时毫秒级互动!

*仅供医学专业人士阅读参考大脑的复杂之处在于众多神经元之间的协同作用,若能在同一时间显示不同神经元群体的电活动,那么将大大加深我们对于大脑功能的理解。基因编码的电压指示蛋白(GEVI)是一类在细胞膜电位变化后产生可检测信号…