整个元素周期表通用,AI 即时预测材料结构与特性

编辑 | 绿萝

材料的性质由其原子排列决定。然而,现有的获得这种排列的方法要么过于昂贵,要么对许多元素无效。

现在,加州大学圣地亚哥分校纳米工程系的研究人员开发了一种人工智能算法,可以几乎即时地预测任何材料(无论是现有材料还是新材料)的结构和动态特性。该算法被称为 M3GNet,用于开发 matterverse.ai 数据库,该数据库包含超过 3100 万种尚未合成的材料,其特性由机器学习算法预测。Matterverse.ai 促进了具有卓越性能的新技术材料的发现。

该研究以「A universal graph deep learning interatomic potential for the periodic table」为题,于 2022 年 11 月 28 日发布在《Nature Computational Science》上。

949c99628e267d56d2c4aa20b6080d8e.png

论文链接:https://www.nature.com/articles/s43588-022-00349-3

对于大规模材料研究,需要根据原子之间的多体相互作用来描述势能面 (PES) 的高效、线性标度的原子间势 (IAP)。然而,如今大多数 IAP 都是为范围很窄的化学物质定制的:通常是单一元素或最多不超过四到五种元素。

最近,PES 的机器学习已成为一种特别有前途的 IAP 开发方法。然而,还没有研究证明在元素周期表和所有类型的晶体中有一个普遍适用的 IAP。

在过去的十年中,高效、可靠的电子结构代码和高通量自动化框架的出现,导致了计算材料数据的大型联邦数据库的发展。在进行结构松弛过程中积累了大量的 PES 数据,即中间结构及其相应的能量、力和应力,但人们对这些数据关注较少。

「与蛋白质类似,我们需要了解材料的结构才能预测其特性。」 该研究的主要作者 Shyue Ping Ong说。「我们需要的是用于材料的 AlphaFold。」

AlphaFold 是谷歌 DeepMind 开发的一种预测蛋白质结构的人工智能算法。为了构建材料的等价物,Ong 和他的团队将图神经网络与多体交互(many-body interactions)相结合,构建了一个深度学习架构,该架构可以在元素周期表的所有元素中通用、高精度地工作。

数学图是晶体和分子的自然表示,节点和边分别代表原子和它们之间的键。传统的材料图神经网络模型已被证明对一般材料特性预测非常有效,但由于缺乏物理约束,因此不适合用作 IAP。

研究人员开发了一个明确包含多体相互作用的材料图架构。模型开发的灵感来自传统的 IAP,在这项工作中,将重点关注三体交互 (M3GNet) 的整合。

d817b30bc676e4f2f22793edcdebafa6.png

图 1:多体图势和主要的计算块示意图。(来源:论文)

IAP 数据集的基准测试

作为初始基准,研究人员择了 Ong 和同事先前生成的元素能量和力的多样化 DFT 数据集,用于面心立方(fcc)镍、fcc 铜、体心立方(bcc)锂、bcc 钼、金刚石硅和金刚石锗。

表 1:M3GNet 模型与现有模型 EAM、MEAM、NNP 和 MTP 在单元素数据集上的误差比较。(来源:论文)

133d14e29ad662f6d528218cb87607f5.png

从表 1 可以看出,M3GNet IAP 大大优于经典的多体势;它们的性能也与基于本地环境的 ML-IAP 相当。应该注意的是,尽管 ML-IAP 可以实现比 M3GNet IAP 略小的能量和力误差,但它在处理多元素化学方面的灵活性会大大降低,因为在 ML-IAP 中加入多种元素通常会导致组合爆炸回归系数的数量和相应的数据要求。相比之下,M3GNet 架构将每个原子(节点)的元素信息表示为可学习的嵌入向量。这样的框架很容易扩展到多组分化学。

与其他 GNN 一样,M3GNet 框架能够捕获长距离的相互作用,而无需增加键构建的截止半径。同时,与之前的 GNN 模型不同,M3GNet 架构仍然随着键数的变化保持能量、力和应力的连续变化,这是 IAP 的关键要求。

元素周期表的通用 IAP

为了开发整个元素周期表的 IAP,该团队使用了世界上最大的 DFT 晶体结构弛豫开放数据库之一(Materials Project)。

93bcf3045c995aef2fa1f8aa80de67de.png

图 2:MPF.2021.2.8 数据集的分布。(来源:论文)

原则上,IAP 可以只训练能量,或者能量和力的组合。在实践中,仅在能量上训练的 M3GNet IAP (M3GNet-E) 无法达到预测力或应力的合理精度,平均绝对误差 (MAE) 甚至大于数据的平均绝对偏差。能量+力(M3GNet- EF)和能量+力+应力(M3GNet-EFS)训练的 M3GNet 模型获得了相对相似的能量和力 MAE,但 M3GNet- EFS 的应力 MAE 约为 M3GNet- EF 模型的一半。

对于涉及晶格变化的应用,例如结构松弛或 NpT 分子动力学模拟,准确的应力预测是必要的。研究结果表明,在模型训练中包含所有三个属性(能量、力和压力)对于获得实用的 IAP 至关重要。最终的 M3GNet-EFS IAP(以下简称为 M3GNet 模型)实现了每个原子 0.035eV 的平均值,能量、力和压力测试 MAE 的平均值分别为 0.072eVÅ−1 和 0.41GPa。

a97f81bd95d3a49e53d148c01be5e8b8.png

图 3:与 DFT 计算相比,测试数据集上的模型预测。

在测试数据上,模型预测和 DFT ground truth 匹配得很好,正如 DFT 和模型预测之间线性拟合的高线性度和 R2 值所揭示的那样。模型误差的累积分布表明,50% 的数据的能量、力和应力误差分别小于每个原子 0.01eV、0.033eVÅ−1 和 0.042 GPa。M3GNet 计算的德拜温度不太准确,这可归因于 M3GNet 对剪切模量的预测相对较差;然而,体积模量预测是合理的。

然后将 M3GNet IAP 应用于模拟材料发现工作流程,其中最终的 DFT 结构是先验未知的。M3GNet 松弛是对来自 3,140 种材料的测试数据集的初始结构进行的。M3GNet 松弛结构的能量计算产生每个原子 0.035 eV 的 MAE,并且 80% 的材料的误差小于每个原子 0.028 eV。使用 M3GNet 松弛结构的误差分布接近于所知道 DFT 最终结构的情况,这表明 M3GNet 潜力可以准确地帮助获得正确的结构。一般来说,M3GNet 的松弛会迅速收敛。

8ae3bc377448385babbda7e2de5bc0f2.png

图 4:使用 M3GNet 弛豫晶体结构。(来源:论文)

新材料发现

M3GNet 能准确、快速地弛豫任意晶体结构,并预测它们的能量,使其成为大规模材料发现的理想选择。研究人员生成了 31,664,858 个候选结构作为起点,使用 M3GNet IAP 松弛结构并计算到 Materials Project 凸包 (Ehull-m) 的符号能量距离;1,849,096 种材料的 Ehull-m 每个原子小于 0.01 eV。

作为对 M3GNet 在材料发现方面性能的进一步评估,研究人员计算了发现率,即从约 180 万 Ehull-m小于 0.001 eV /原子的材料中均匀采样 1000 个结构的 DFT 稳定材料(Ehull−dft ≤ 0)的比例。发现率保持接近 1.0,达到每个原子约 0.5 eV 的 Ehull-m 阈值,并且在每个原子 0.001 eV 的最严格阈值下保持在 0.31 的合理高值。

75ff9583ec37e83c8c2e284f258972bc.png

图 5:对于 1000 个结构的均匀样本,DFT 稳定比作为 Ehull−m 阈值的函数。(来源:论文)

对于这个材料集,研究人员还比较了有无 M3GNet 预松弛的 DFT 松弛时间成本。结果表明,没有M3GNe t预松弛时,DFT 松弛时间成本约为 M3GNet 预松弛时的 3 倍。

d5b2f18d12f1b293d34e74717c9c8997.png

图 6:使用 M3GNet 预松弛的 DFT 加速。(来源:论文)

在今天 matterverse.ai 的 3100 万种材料中,预计有超过 100 万种材料具有潜在的稳定性。Ong 和他的团队不仅打算大大扩展材料的数量,还打算大幅扩展 ML 预测属性的数量,包括使用他们之前开发的多保真度方法的小数据量的高价值属性。

除了结构松弛,M3GNet IAP 在材料动态模拟和性能预测方面也有广泛的应用。

「例如,我们通常对锂离子在锂离子电池电极或电解质中的扩散速度很感兴趣。扩散越快,电池充电或放电的速度就越快,」Ong 说。「我们已经证明,M3GNet IAP 可用于以高精度预测材料的锂电导率。我们坚信 M3GNet 架构是一种变革性工具,可以极大地扩展我们探索新材料化学和结构的能力。」

为了推广 M3GNet 的使用,该团队已将该框架作为开源 Python 代码发布在 Github 上。并计划将 M3GNet IAP 作为工具集成到商业材料模拟包中。

参考内容:https://techxplore.com/news/2022-11-breakthrough-algorithm-exploration-space-materials.html

人工智能 × [ 生物 神经科学 数学 物理 材料 ]

「ScienceAI」关注人工智能与其他前沿技术及基础科学的交叉研究与融合发展

欢迎注标星,并点击右下角点赞在看

点击读原文,加入专业从业者社区,以获得更多交流合作机会及服务。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481350.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Trends Cogn Sci 封面综述| 北师大毕彦超教授:人脑知识的双重编码理论

来源:brainnews编译作者:(嗯铃、洛文 brainnews创作团队)校审:(洛文、Freya brainnews编辑部)我们的大脑是如何编码有关世界的各种各样知识?我们与日益强大的AI有着怎样的不同&a…

亚马逊 CTO Werner Vogels:2023年及未来五大技术趋势预测

来源:亚马逊云科技近年来,几次全球性危机占据了我们的日常生活,因此看看我们是否可以利用技术来解决这些棘手的人类问题。如今,我们可以从很多互联设备获取数据,例如:可穿戴设备、医疗设备、环境传感器、视…

深度学习如何集成领域知识?IBM研究等《知识增强深度学习》综述,全面阐述科学与经验知识增强的深度学习...

来源:专知尽管在过去的几年里,深度学习模型在许多不同的领域取得了巨大的成功,但通常数据匮乏,在不可见的样本上表现不佳,而且缺乏可解释性。目标领域往往存在各种先验知识,利用这些先验知识可以弥补深度学…

不确定因果:当因果遇到量子

导语2022年诺贝尔物理学奖授予“用纠缠光子实验验证量子力学违反贝尔不等式”,确认了被称为“鬼魅般的超距作用”的量子纠缠现象。量子的世界常常超出人类的直觉,当我们将因果关系从经典世界外推到量子世界,会发生什么?研究发现&a…

脑机接口深度报告!四大关键技术让科幻走进现实|智东西内参

来源:智东西脑科学问题是人类社会面临的基础科学问题之一,是人类理解自然和理解人类本身的待深入探索领域,而脑机接口是有效探索手段之一。在国家战略的积极推动下,在科技创新不断更迭促进下,在人民大众期待关注下&…

写代码调 Bug,OpenAI 发布最强 AI 对话系统 ChatGPT!

来源:CSDN(ID:CSDNnews)整理:苏宓GPT-3 发布的两年后,我们没等来它的亲弟弟 GPT-4,而是在今天亲眼见证了 OpenAI 带来了一种全新的 AI 聊天机器人——ChatGPT,也可以称之为是 GPT-3 …

AI 大模型开源之困:垄断、围墙与算力之殇

从新兴技术转变为AI基础设施,大模型开源很重要,但也很难。来源:AI科技评论作者:李梅编辑:陈彩娴2020年6月,OpenAI发布GPT-3,其千亿参数的规模和惊人的语言处理能力曾给国内AI界带来极大的震动。…

神经符号 AI,或为下一代 AIoT 的新解法

来源:AI科技评论作者:黄楠编辑:陈彩娴11 月 22 日,2023 年度 IEEE Fellow 名单公布,入选者约1/3为华人学者。IEEE Fellow 被称为全球电子电气工程领域的最高荣誉,每年当选人数不足整个 IEEE 协会的千分之一…

ChatGPT会取代搜索引擎吗

来源:AI科技大本营作者:张俊林本文经作者授权发布,原文地址:https://zhuanlan.zhihu.com/p/589533490作为智能对话系统,ChatGPT最近两天爆火,都火出技术圈了,网上到处都在转ChatGPT相关的内容和…

菲尔兹奖得主再次突破数论难题:多少整数能写成2个有理数立方和?结论直接影响“千禧难题”之七...

Pine 萧箫 发自 凹非寺量子位 | 公众号 QbitAI困扰数学界几个世纪的难题,终于有重大突破了!这个难题如果被解决,会直接影响到一个著名未解之谜的求解——贝赫和斯维讷通-戴尔猜想。贝赫和斯维讷通-戴尔猜想是数学界顶尖的7大千禧难题之一&…

从城市到国家:多学科视角的城市复杂系统

摘要与城市一样,国家在很大程度上是人造的系统。尽管它们在地点和规模上有所不同,但城市和国家都是可识别的单位,具有独特的特征,是独立的(不能被分解成部分而不失去其特征或个性的系统)。一个国家的历史与…

杀死1500只动物?马斯克的脑机接口公司被查!已宣布半年内进行人体试验

来源:每日经济新闻记者:郑雨航编辑:段炼 兰素英 杜波 杜恒峰校对:王月龙当地时间12月5日,路透社报道称,因涉嫌侵犯动物福利的违规行为,马斯克的脑机接口公司Neuralink正面临美国联邦部门的调查。…

人民日报:在集成电路基础研究中奋力攀登

来源:芯榜Pro转载自人民日报党的十八大以来,一大批70后、80后、90后青年科研人员脱颖而出,日益成为科技创新的生力军、主力军。党的二十大报告提出:“必须坚持科技是第一生产力、人才是第一资源、创新是第一动力,深入实…

骆清铭院士:给“大脑”绘制一个清晰可见的“地图”

来源:学习时报作者简介:骆清铭,中国科学院院士,海南大学校长,华中科技大学苏州脑空间信息研究院首席科学家。骆清铭团队研发的显微光学切片断层成像系统(MOST)系列技术,为实现单神经…

AI大神LeCun深度学习公开课来啦!4万字干货笔记(附干货笔记下载)

来源:Datawhatle喜欢深度学习?最好的方法就是在线课程。这里推荐图灵奖得主、纽约大学教授Yann LeCun主讲的在线课程。该课程最重要的优点是,它集成了LeCun对深度学习的思考。通过这门课,学习者可以了解深度学习的现状&#xff0c…

这种由数学描述的现象,在自然中终于找到了

#创作团队:原文作者:Raphael Sarfati(科罗拉多州大学波尔多分校博士后副研究员)编译:Gaviota排版:雯雯#参考来源:https://theconversation.com/synchrony-with-chaos-blinking-lights-of-a-fire…

互联网的未来:为什么我们需要 HTTP/3?

来源:SDNLAB*本文系SDNLAB编译自Ably博客自1997年HTTP/1.1标准化以来,一直是首选的应用层协议。多年来,为了跟上互联网的发展和网络上交换内容的多样性,HTTP 不得不进行升级。本文展示了 HTTP 协议的演变,深入探讨了 H…

评估深度学习模型以预测表观基因组概况

编辑 | 萝卜皮深度学习已经能够成功预测 DNA 序列的表观基因组图谱。大多数方法将此任务定义为二元分类,依赖峰值调用者来定义功能活动。最近,出现了定量模型来直接预测实验覆盖值作为回归。随着具有不同架构和训练配置的新模型不断出现,由于…

DeepMind携AlphaCode登Science封面,写代码能力不输程序员

来源:机器之心编辑:小舟、陈萍AI 卷到程序员自己身上了。今年年初,DeepMind 发布了基于 Transformer 的新模型 AlphaCode,该模型实现了大规模代码生成。现在,AlphaCode 又在《Science》上发表了新论文,研究…

微软 CTO 断言,明年是AI社区最激动人心的一年,网友:GPT-4 要来了?

来源:AI前线 整理:褚杏娟 核子可乐GPT 不出,AI 万古如长夜。“对于人工智能,2022 年是有史以来最激动人心的一年。”微软首席技术官 Scott Stein 在近日的分享中说道,但他还自信地表示,“2023 年将是 AI 社…