亚马逊 CTO Werner Vogels:2023年及未来五大技术趋势预测

5d2d85a6c23e04f338f255290c58a5cf.jpeg

来源:亚马逊云科技

近年来,几次全球性危机占据了我们的日常生活,因此看看我们是否可以利用技术来解决这些棘手的人类问题。如今,我们可以从很多互联设备获取数据,例如:可穿戴设备、医疗设备、环境传感器、视频捕捉设备,数据来源比以往任何时候都多。当这些设备与计算机视觉技术、机器学习技术和模拟技术等云技术相结合时,我们开始看到信息和应用程序的完美融合可以让我们瞬间看到大数据。

下一波的创新者和发明家(我曾有幸在拍摄《Now Go Build》时遇到了其中的一些人)已经在构建解决方案,以重新造林,让年轻人保持活力,并且重塑从仓库到交付的供应链等,这才是真正的开始。随着获取先进技术变得更加普遍,生活的每个方面都成为我们可以分析的数据,我们将开始看到创新的洪流在2023年激增。

 预测一   

云技术将重塑人们熟知的体育运动行业

像音乐和视频一样,运动将成为我们可以分析的数据流,这些数据带来的认知将在未来几年内改变整个运动行业,并重新定义每场比赛的意义。

032743dd6bb450e7e57ef5b9b87bda1d.jpeg

体育运动是人类生活的一部分,超越时间、文化和物理空间的边界。此时此刻,世界上最大的体育赛事之一——世界杯正在举行,预计将有50亿人观看。到目前为止,广播电视对职业运动的发展产生了极大的影响,为今天这个价值5000亿美元的行业铺路。下一个改变游戏规则的技术即将到来。在未来几年,每项运动,从青少年篮球到职业足球,各个层面都将经历数字化转型。

像 Veo 这样的公司正在引领这一潮流,它利用机器学习、计算机视觉和信息流处理等云技术来缩小业余运动员和职业运动员之间的数字鸿沟。Veo 不仅为观看业余体育运动的观众创造了类似专业体育直播的体验,还建立了一个深度神经网络,使其能自动从视频流中创作精彩片段。这使得球员、教练和球探们可以轻松找到关键战术,以改进自己的战术,并以全新的方式去分享这些战术。随着像 Veo 等技术越来越广泛地应用于所有运动的各个层面,想象一下接下来会发生什么。

德甲和 NFL 等顶级联赛已经开始使用视频流、可穿戴设备、物联网传感器等进行实时分析和洞察,但展望未来,这些功能将继续发展,这些技术将成为几乎每项运动的各个级别的无所不在的力量。

想象一下这样一个场景,一名教练可以使用实时分析的计算机视觉和生物数据,在球员抽筋或失球之前换下他们,用休息最充分的队友代替他们,这是现在可以量化的事情。这同时提高了运动员的安全性,并增加了运动的竞争力。在这一点上,运动本身将真正开始成为一种数据流,我们可以实时分析和决定球员的水合度、球的运动、场地饱和度——所有这一切加起来,比我们今天看到的任何东西都更丰富。更多的数据带来了进一步的创新。在不太遥远的未来,我们将达到这样一个点,即团队在每场比赛期间都在后台运行持续的假设模拟,使他们能够更好地预测他们的决策在那一刻的影响。技术本身将成为职业体育运动的竞争基础。

无论是在现场还是在屏幕上,粉丝的体验都将发生变化。体育场将迅速采用我们在零售等行业(如 Amazon Go 商店)看到的一些创新方法,在这些行业,计算机视觉、传感器技术和深度学习的使用将实现无票入场和即拿即走的采购模式。我们还将开始看到下一代的数据覆盖和实时洞察都会深入到运动员层面,从而增强了运动的体验感,并使体育运动更接近我们对当今最具视觉信息量的视频游戏的预期。共同观看和个性化观看体验将继续发展,这50亿观众将比以往任何时候都更加紧密地联系在一起。

体育界目前正处于有史以来最大的变革边缘,而云技术正是这场变革的核心。

   预测二   

模拟世界将重塑我们的体验模式

空间计算、仿真技术、数字双胞胎这些技术多年来一直在慢慢成熟,但对日常产生的影响还是有限的。这种情况正在迅速发生变化。到2023年,云技术将使这些技术变得更容易获得,进而使一些新用例类别的实现不受现实约束。

6d2faa2f62fbf28bfc27d3f4ed681784.jpeg

仿真技术用来制造更好的赛车、预测天气和模拟股票市场。虽然仿真技术可以解决的问题很重要,但是构建和运行仿真技术也是很有难度的,它是日常用例的一个障碍。公司非常紧缺高性能硬件和专业人员。以喷射机翼或赛车的流体动力学模拟为例,仅模拟真实场景的一秒钟就可能需要多达 150TB 的数据。然而,随着最近推出的 Amazon SimSpace Weaver 等技术的出现,这种情况正在迅速发生变化,Amazon SimSpace Weaver 技术是许多模拟技术中的第一个技术,将为未来奠定基础,在未来,我们世界中的几乎任何东西都可以模拟,并且终将被模拟。模拟技术将有助于我们在道路建设、仓库组织和灾难应对方面做出更好的决策。通过模拟技术,我们可以展望未来,只需运行大量的虚拟场景就可以去预测可能发生的事件,并看看多年后的影响。借助 SimSpace Weaver 这样的技术,Terraformation 这样的公司可以模拟整个森林的生长,以达到种植1万亿棵树的目标。因此,它可以确保尽可能多的碳抵消量和生物多样性,让森林能够健康生长。

另一个我看到创新快速增长的领域是空间计算技术。各公司已经在构建专门的硬件,并使用云技术来捕捉和创建几乎所有环境的 3D 模型。仅用一台移动设备就能做到这一点将很快成为现实。这种普惠化将激发建筑、施工、商业地产和零售行业的新一轮创新浪潮。就像互联网上的视频一样,空间计算技术将在未来几年迅速发展,到那时 3D 对象和环境就像今天你最喜欢的短视频社交媒体一样容易创建和消费。互联网上的静态 2D 产品图像将成为过去,取而代之的是 3D 模型,您可以像今天在浏览器中看到的那样无缝拿起、旋转并把它们放在客厅。您可以期待与这些模型能有更多的互动,比如它的一些功能就可以在你的虚拟家庭中模拟出来。虚拟灯不仅可以放在你客厅的地板上,你还可以打开和关闭它,实时观察环境光如何与你的虚拟家具互动,并了解它对能源消耗的影响。所有这一切,都在您按下“立即购买”按钮之前。

2023年,类似这样的技术将开始融合。随着数字技术在我们的现实世界中的日益融合,模拟技术对于确保空间计算技术产生正确影响变得更加重要。这将导致曾经完全不同的技术开始被企业和消费者并行使用的良性循环。云技术凭借其巨大的规模和可访问性,将推动这一新时代的到来。

   预测三   

智能能源领域的创新浪潮

储能表面材料、分布式电网、智能消费技术。在2023年,我们将看到全球范围内的快速发展,这将改善我们生产、储存和消费能源的方式。

c3183af23919caa3fd6e577c986a0161.jpeg

我们正处于另一场能源危机之中。不断上涨的成本和可靠的能源获取困难是全球性的问题,它们影响着每个人。虽然这不是我们第一次面临能源危机,但几种成熟的技术开始融合,将使我们能够以前所未有的方式解决这一问题。

我们周围的环境产生了足够多的可再生能源。实际上,挑战在于存储和按需交付给消耗这些能源的系统。亚马逊正在这一领域开展工作,以亚利桑那州的150兆瓦电池存储系统为例,它为我们在该地区的设施提供清洁、可靠的能源。但我们不是唯一的使用者,全球各个公司也都在这个领域迅速创新。云科技正在将材料研究科学用于新的使用案例,例如将能源储存整合到他们意图提供动力的物体的结构中。想象一下,一艘船的两侧实际上是为旅程提供动力的电池。这只是冰山一角,我们也开始观察到如堆积块和燃料电池长期存储的突破点。

另一个领域是能源的分散化。随着能源供应的不确定性,一些社区开始转向微电网。我喜欢把微电网想象成社区花园(但用于能源),社区成员用这些来维持自己的生活,进而减少对传统能源公司及老化基础设施的依赖。在我家附近,我们有一个小型微电网,我们通过它收集太阳能并在租户之间共享。近年来,由于地缘政治事件的发生以及气候波动,能源挑战有所加剧,微电网将成为世界各地许多社区的可行解决方案,云科技将在实现这一目标中发挥作用。来自太阳能电池板、风力发电场、地热和水力发电的数据将在云科技中进行流化、存储、监控、丰富和分析。机器学习将用于分析所有能源数据,以预测使用高峰,并通过家庭级别的颗粒度,进行重新分配能源来防止断电。

我们还将看到基于物联网的智能消费设备,将会在未来一年真正开始在全球范围内广泛使用。这将引领下一阶段创新。这些设备为家庭和企业提供的新的观察能力,想象一下,如果我们通过使用节能技术改造历史建筑,将会节省多少能源。

在未来几年,我们将看到各种智能能源技术的快速融合,因为我们终于达到了以技术解决方案解决所面临危机的门槛。虽然这可能不会像我们希望的那样产生立竿见影的效果,但这些技术将从根本上永远改变我们在未来创造、储存和消费能源的方式。

   预测四   

即将到来的供应链转型

2023年,计算机视觉和深度学习等技术的采用将推动供应链的发展。无人驾驶车队、自主仓库管理和模拟只是将引领智能物流和全球供应链进入新时代的少数优化措施。

b9d55d408f3602f3359028f3cde27e2b.jpeg

过去几年,我常常思考有关全球供应链的脆弱性。我们每天都被提醒,延迟交货、缺货、空货架。虽然亚马逊通过创新对其供应链进行了微调,如数字货运匹配和配送站,但仍有许多公司在应对物流挑战。这种情况即将发生改变。

改变将从商品本身的制造开始。工厂中的物联网传感器的数量将激增,机器学习不仅将用于预测机器故障,还将用于预防故障。减少停机时间意味着更加稳定的生产。在全球范围内运送这些产品是一个完全不同的挑战。由云计算驱动的数字货运网络将跨越国家甚至海洋,并提供实时数据,使承运人能够选取最优的运输路线,并改变航线以应对如设备故障和天气干扰等不可避免的事件。在供应链的每一个层面上,我们可以把它看成对货物的当前状态和到达时间的实时预测。

这些货运网络将为首次跨国自动驾驶卡车运输奠定基础,这些影响将立即得到显现。像美国这样的国家目前正面临着8万多名司机的短缺问题。通过空间计算、边缘计算和模拟实验,自动驾驶卡车运输将对我们的全球供应链产生巨大影响。为什么?因为司机驾驶过长时间,将可能分心、变得疲劳,有潜在危险。这是在我们考虑国别健康和安全法规之前。这意味着从南加州运出的新鲜水果只能寄希望于在开始变坏之前到达达拉斯。然而,一辆自动驾驶卡车则可以全天24小时在路上行驶,没有强制性的休息,不会疲劳、也没有不耐烦或分心。并且产品将更快、更安全、更高效地到达它们需要的地方。

抵达当地仓库后,机器人拣货、订单分拣和自动化包装将变得更加普遍。我们将继续看到这些通过使用人工智能、计算机视觉对精确处理库存产品的情况正随着机器人技术的创新而发展。自主机器人也将在仓储中发挥更大的作用。想象一下,如果增加一名叉车操作员,他花了很长一段时间只是在搜索产品,但如果拥有一个实时更新的库存数字副本,使用自主飞行的库存无人机将不断更新。

转变供应链的关键是利用技术来优化产品过程中的每一步。从明年开始,我们将看到智能工厂、智能设备和智能航运的加速发展。这其中的每一个都将在保护工人安全、优化库存管理、降低维护成本和简化生产流程方面发挥作用。未来的供应链是数字化的。

   预测五   

专用芯片成为主流

2023年,专用芯片的使用将迅速增加。因此,随着工作负载将利用硬件优化来最大限度地提高性能,同时降低能耗和成本,创新的步伐将会进一步加快。

f6e293e8b1d35a11c32352e8e5fc4da5.jpeg

定制化的专用芯片和专用硬件在消费技术行业迅速获得了发展。随着定制化专用芯片的制造和采用,从我们的笔记本电脑到我们的手机,再到我们的可穿戴设备,它们都在性能上有了显著的提升。虽然消费者领域的采用速度很快,但商业应用程序和系统的情况却并非如此,在这些领域,软件和硬件的更新周期通常较长。然而,随着定制化专用芯片的普及和采用,这种情况将在未来几年迅速发生改变。

在亚马逊云科技,平均每天有1亿个 EC2 实例被启动(截至撰写本文时)。这在很大程度上是由于多年来我们与客户之间的密切合作,了解他们正在运行的工作负载类型,进而确定我们接下来应该构建什么。与消费类设备一样,这使得亚马逊云科技近年来在芯片设计上投入大量资金。这是因为我们知道,公司在云科技中运行的工作负载在定制芯片上运行,具有更好的性能以及更高的成本效益。这些芯片是为特定情况而专门构建的。

以机器学习工作负载为例。传统上,软件工程师一直依赖昂贵、耗电的 GPU 来完成从模型构建到推理的全部工作。然而,这种一刀切的方法并不高效——大多数 GPU 都没有针对这些任务进行优化。在未来几年,越来越多的工程师将会看到将工作负载转移到专为模型训练(Amazon Trainium)推理(Amazon Inferentia)。随着这种情况的发生,新一轮的创新将开始。通过使用基于 Trainium 的实例实现约50%的培训成本节约,或者使用基于 Inferentia2 的实例实现了50%的每瓦特性能,工程师和企业都会注意我们将开始看到工作负载的大规模迁移。即使是一般的应用也是如此,在这些应用中,迁移到定制化的专用芯片上仍有好处,比如基于 Graviton3 的实例,在相同的性能下,它比同类 EC2 实例的能耗低60%。

成本节约和性能优势将带来更多的实验、创新以及采用,并最终为其他特定工作负载提供更多的定制芯片,这是一个良性循环。艾伦·凯曾经说过,“真正对软件认真的人,应该制造自己的硬件。”在未来一年里,真正认真对待软件的人将真正开始利用定制芯片所提供的一切优势。

未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)大脑研究计划,构建互联网(城市)大脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。每日推荐范围未来科技发展趋势的学习型文章。目前线上平台已收藏上千篇精华前沿科技文章和报告。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

2f4a8e5917b6f7479bbb3f0feb8e0d33.jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481348.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

深度学习如何集成领域知识?IBM研究等《知识增强深度学习》综述,全面阐述科学与经验知识增强的深度学习...

来源:专知尽管在过去的几年里,深度学习模型在许多不同的领域取得了巨大的成功,但通常数据匮乏,在不可见的样本上表现不佳,而且缺乏可解释性。目标领域往往存在各种先验知识,利用这些先验知识可以弥补深度学…

不确定因果:当因果遇到量子

导语2022年诺贝尔物理学奖授予“用纠缠光子实验验证量子力学违反贝尔不等式”,确认了被称为“鬼魅般的超距作用”的量子纠缠现象。量子的世界常常超出人类的直觉,当我们将因果关系从经典世界外推到量子世界,会发生什么?研究发现&a…

脑机接口深度报告!四大关键技术让科幻走进现实|智东西内参

来源:智东西脑科学问题是人类社会面临的基础科学问题之一,是人类理解自然和理解人类本身的待深入探索领域,而脑机接口是有效探索手段之一。在国家战略的积极推动下,在科技创新不断更迭促进下,在人民大众期待关注下&…

写代码调 Bug,OpenAI 发布最强 AI 对话系统 ChatGPT!

来源:CSDN(ID:CSDNnews)整理:苏宓GPT-3 发布的两年后,我们没等来它的亲弟弟 GPT-4,而是在今天亲眼见证了 OpenAI 带来了一种全新的 AI 聊天机器人——ChatGPT,也可以称之为是 GPT-3 …

AI 大模型开源之困:垄断、围墙与算力之殇

从新兴技术转变为AI基础设施,大模型开源很重要,但也很难。来源:AI科技评论作者:李梅编辑:陈彩娴2020年6月,OpenAI发布GPT-3,其千亿参数的规模和惊人的语言处理能力曾给国内AI界带来极大的震动。…

神经符号 AI,或为下一代 AIoT 的新解法

来源:AI科技评论作者:黄楠编辑:陈彩娴11 月 22 日,2023 年度 IEEE Fellow 名单公布,入选者约1/3为华人学者。IEEE Fellow 被称为全球电子电气工程领域的最高荣誉,每年当选人数不足整个 IEEE 协会的千分之一…

ChatGPT会取代搜索引擎吗

来源:AI科技大本营作者:张俊林本文经作者授权发布,原文地址:https://zhuanlan.zhihu.com/p/589533490作为智能对话系统,ChatGPT最近两天爆火,都火出技术圈了,网上到处都在转ChatGPT相关的内容和…

菲尔兹奖得主再次突破数论难题:多少整数能写成2个有理数立方和?结论直接影响“千禧难题”之七...

Pine 萧箫 发自 凹非寺量子位 | 公众号 QbitAI困扰数学界几个世纪的难题,终于有重大突破了!这个难题如果被解决,会直接影响到一个著名未解之谜的求解——贝赫和斯维讷通-戴尔猜想。贝赫和斯维讷通-戴尔猜想是数学界顶尖的7大千禧难题之一&…

从城市到国家:多学科视角的城市复杂系统

摘要与城市一样,国家在很大程度上是人造的系统。尽管它们在地点和规模上有所不同,但城市和国家都是可识别的单位,具有独特的特征,是独立的(不能被分解成部分而不失去其特征或个性的系统)。一个国家的历史与…

杀死1500只动物?马斯克的脑机接口公司被查!已宣布半年内进行人体试验

来源:每日经济新闻记者:郑雨航编辑:段炼 兰素英 杜波 杜恒峰校对:王月龙当地时间12月5日,路透社报道称,因涉嫌侵犯动物福利的违规行为,马斯克的脑机接口公司Neuralink正面临美国联邦部门的调查。…

人民日报:在集成电路基础研究中奋力攀登

来源:芯榜Pro转载自人民日报党的十八大以来,一大批70后、80后、90后青年科研人员脱颖而出,日益成为科技创新的生力军、主力军。党的二十大报告提出:“必须坚持科技是第一生产力、人才是第一资源、创新是第一动力,深入实…

骆清铭院士:给“大脑”绘制一个清晰可见的“地图”

来源:学习时报作者简介:骆清铭,中国科学院院士,海南大学校长,华中科技大学苏州脑空间信息研究院首席科学家。骆清铭团队研发的显微光学切片断层成像系统(MOST)系列技术,为实现单神经…

AI大神LeCun深度学习公开课来啦!4万字干货笔记(附干货笔记下载)

来源:Datawhatle喜欢深度学习?最好的方法就是在线课程。这里推荐图灵奖得主、纽约大学教授Yann LeCun主讲的在线课程。该课程最重要的优点是,它集成了LeCun对深度学习的思考。通过这门课,学习者可以了解深度学习的现状&#xff0c…

这种由数学描述的现象,在自然中终于找到了

#创作团队:原文作者:Raphael Sarfati(科罗拉多州大学波尔多分校博士后副研究员)编译:Gaviota排版:雯雯#参考来源:https://theconversation.com/synchrony-with-chaos-blinking-lights-of-a-fire…

互联网的未来:为什么我们需要 HTTP/3?

来源:SDNLAB*本文系SDNLAB编译自Ably博客自1997年HTTP/1.1标准化以来,一直是首选的应用层协议。多年来,为了跟上互联网的发展和网络上交换内容的多样性,HTTP 不得不进行升级。本文展示了 HTTP 协议的演变,深入探讨了 H…

评估深度学习模型以预测表观基因组概况

编辑 | 萝卜皮深度学习已经能够成功预测 DNA 序列的表观基因组图谱。大多数方法将此任务定义为二元分类,依赖峰值调用者来定义功能活动。最近,出现了定量模型来直接预测实验覆盖值作为回归。随着具有不同架构和训练配置的新模型不断出现,由于…

DeepMind携AlphaCode登Science封面,写代码能力不输程序员

来源:机器之心编辑:小舟、陈萍AI 卷到程序员自己身上了。今年年初,DeepMind 发布了基于 Transformer 的新模型 AlphaCode,该模型实现了大规模代码生成。现在,AlphaCode 又在《Science》上发表了新论文,研究…

微软 CTO 断言,明年是AI社区最激动人心的一年,网友:GPT-4 要来了?

来源:AI前线 整理:褚杏娟 核子可乐GPT 不出,AI 万古如长夜。“对于人工智能,2022 年是有史以来最激动人心的一年。”微软首席技术官 Scott Stein 在近日的分享中说道,但他还自信地表示,“2023 年将是 AI 社…

以“开放同行评议”推动学术发展

来源:《中国社会科学报》图片来源:CFP同行评议是指同一领域的专家学者评议研究人员稿件,确定学术论文是否适合发表、提出意见的过程。同行评议一直是学术期刊出版的重要基石。然而,学术界关于同行评议中的偏见和不利影响的争论&am…

2022年,人工智能领域发展的七大趋势有哪些?

来源:福布斯官网美国《福布斯》网站在近日的报道中指出,尽管目前很难想象机器自主决策所产生的影响,但可以肯定的是,当时光的车轮到达2022年时,人工智能领域新的突破和发展将继续拓宽我们的想象边界,其将在…