专访中国工程院院士杜祥琬,可控核聚变美国成了吗?

5c30bf388e57f0d940c8364828254086.png

凤凰网科技 出品

作者|蒋浇

微信编辑|李金洋

12月13日,美国能源部宣布,在加利福尼亚州的劳伦斯·利弗莫尔国家实验室(LLNL),研究人员首次在核聚变反应中产生“净能量增益”,即聚变反应产生的能量大于促发该反应的镭射能量。

人类探索核聚变已经有几十年的历史,但长期以来聚变反应总是无法实现净能量增加,即消耗能量总是超过反应产生的能量。

因此,美国宣布首次实现聚变点火,旋即引发了科学界的轰动。有乐观的议论认为,一劳永逸地解决能源问题已经出现曙光,核聚变有望数十年或更长时间内实现商业化,它将为人类带来真正清洁、无限能量的能源。

美国激光核聚变成功点火,能否破解人类能源难题?

中国工程院院士杜祥琬接受凤凰网采访时表示,美国国家点火装置实验目的,不是给人类提供能源解决思路,而是核武器研究。

 解决能源问题的曙光?

核聚变是模仿太阳的原理,使两个较轻的原子核结合成一个较重的原子核,结合期间释放出大量能量。与化石能源相比,核聚变反应不排放二氧化碳,与目前广泛应用的核能(核裂变)相比,它既不会产生核废料,辐射也极少,因此被称为清洁能源的“圣杯”。

此前,美国国家点火设施已进行了多次核聚变实验,最好的成绩是产出和投入能量比为70%,仍然是净能量损失。这一次的不同之处在于,核聚变反应产生了大约2.5兆焦耳的能量,大约是激光所消耗的2.1兆焦耳能量的120%,输出能量大于输入能源。

对此,美国能源部长詹妮弗·格兰霍姆表示,美国首次成功在核聚变反应中实现净能量增益是一项“里程碑式的成就”,这项成果预计将可能帮助人类在实现零碳排放能源的进程中迈出关键一步。

不过,相较于乐观的美国专家们,中国工程院院士杜祥琬对这一实验成果保持了更谨慎的看法。他在接受凤凰网采访时表示,美国国家点火装置实现的净能量增益,是科研上的进展,但离产生上百倍的高增益目标还差得很远,更不说提变成真正清洁、无限能量的“人造太阳”。

他还指出,美国国家点火装置实验目的,不是给人类提供解决能源问题的思路,而是核武器研究。

据悉,美国国家点火装置由美国能源部下属管理核武器的国家核安全局负责运行,它的主要任务是实现能产生高能量的聚变反应,并为美国核武器储备的维护提供指导。

杜祥琬认为,LLNL的核聚变增益属于聚变物理范畴,不太可能为人类能源问题提供解决思路。他解释道,人们真正用于能源的核聚变,是一种非爆炸性的可控的核聚变。

根据实验分析,LLNL核聚变反应释放了大约3.15MJ的能量,比进入反应的能量多大约54%,是之前1.3MJ记录的两倍多。 不过,虽然聚变反应产生了超3.15MJ的能量,但NIF在此过程中消耗了高达322MJ的能量,大约是3.15MJ的102倍。 

与美国相比,我国的“人造太阳”现在处于什么水平?

目前为止,人造太阳的途径目前有两个:一是磁约束核聚变,另一类就是此次成功点火的激光核聚变。

中国工程院院士杜祥琬向我们解释了激光核聚变的原理。劳伦斯利弗莫尔国家实验室(LLNL)“国家点火装置”的研究人员使用了192束激光,从两端向一个圆柱体发射激光束将能量注入,而圆柱体中一个仅有半个气枪BB弹大小的靶丸受到挤压,球内的氘氚聚变燃料被“点燃”,产生出能量。

磁约束核聚变的具体应用为托卡马克装置,通电后托卡马克内部会产生巨大的螺旋型磁场,将悬浮其中的等离子体加热到一个较高温度,最终引发核聚变。

杜祥琬指出,对于两种技术路线,学界主流认识认为,托卡马克装置的磁约束核聚变实现商用化更有希望,是真正走向聚变能的技术途径。

目前,全球最大“人造太阳”国际热核聚变实验堆(ITER),即采用了托卡马克装置。ITER是全球规模最大、影响最深远的国际科研合作项目之一,同时是中国以平等身份参加的最大国际科技合作项目。

2006年,中国、欧盟、美国、俄罗斯、日本、韩国和印度共同签署了国际热核聚变实验堆(ITER)项目启动协定。今年11月,中国负责的其中一个关键组成部分,增强热负荷第一壁首件制造完工。

据介绍,中国核能发展实施“热堆-快堆-聚变堆”三步走战略,在磁约束和惯性约束聚变上均有研究。目前,中国磁约束核聚变技术的研究上已处于世界前列。

2021年12月我国合肥东方超环实现了1056秒长脉冲高参数等离子体运行,是之前保持记录的2倍还多;今年10月,中国新一代“人造太阳”HL-2M等离子体电流突破100万安培,创造了中国可控核聚变装置运行新纪录,标志着中国核聚变研发距离聚变点火迈进了重要一步。

人类距离

用上核聚变能源有多远?

无论是哪条技术路线,核聚变商业化广泛应用,将人造太阳变成现实,都预计仍需要很长时间。

LLNL主任基姆·布迪尔(Kim Budil)表示,实现核聚变商业化可能需要数十年,核聚变技术还需克服诸多障碍,包括实现每分钟完成多次聚变点火,并拥有稳健的驱动程序系统等。 “我们的计算表明,激光系统有可能实现数百兆焦耳的产量,实现产量的目标是有途径的。”但我们现在离实现那个目标还很远。”

杜祥琬表示,核聚变没有原理性的障碍,但是技术比较困难。想要大规模使用聚变能,最大的挑战是要有高密度高温的条件,需要反应维持足够长的时间,并且科学家们能够大幅降低他们的成本。“我没有聚变专家那么乐观,但实现地球上造一颗人造太阳,本世纪是可以看到的。”

杜祥琬还指出,可控核聚变能够多广泛应用在人类的生活和工作中,取决于它多经济,现在全球科学家都还在努力探索。不过,可控核聚变获取能源也只是人类探索清洁和可持续能源的出路之一,其他的可持续和清洁能源同样可以研究和利用,如太阳能、风力、水力、地热等能源。

推荐阅读 

078e465bfbb3eaf8b4b185794c16b0a0.png

欢迎下载凤凰新闻客户端订阅凤凰网科技4a2b79fc5a64200c3e10470284953e8a.jpeg

你的每一个在看,都是对自己品味的认可!dc69a6a76f5b71494b8efb446871d6a0.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481298.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

一个问题就可以辨别真假NLP(自然语言处理)研究者

╮(╯▽╰)╭哎,自从人工智能火了以后,最近自称NLP研究者的人越来越多了,然而这其中的大忽悠有多少小夕就不想多说了。如果连自己在哪个领域、哪个学科搞研究都不懂的话,你相信他真的是这个领域的研究者喵?反正小夕不信…

2023年十大数字科技前沿应用趋势

来源:腾讯研究院编辑:蒲蒲继21年的“变量”、22年的“融合”,2023年数字科技的发展呈现出明显的“升维”特征。近日,腾讯研究院联合百位内部科学家、技术专家和外部院士专家,发布《升维 - 2023年十大数字科技前沿应用趋…

绕开数学,讲讲信息论

看到文章的标题,肯定有人想说“诶?小夕你不是做人工智能吗?怎么又捣鼓起通信里面的信息论了?”小夕肯定会很开心的揪住你,然后说“哈哈哈~发现一只外行!”学过机器学习的喵喵肯定知道很多决策树的核心就是计…

大数据时代的机器学习有什么不同?

小夕昨晚没有发文章&#xff0c;却收到了一个大红包和好多晚安&#xff0c;好受之有愧..>_<...谢谢你们喵。路人戊&#xff1a;小夕&#xff0c;我们身处大数据时代了&#xff0c;好厉害呢。小夕&#xff1a;嗯嗯&#xff0c;哪里厉害了呢&#xff1f;路人戊&#xff1a;…

Science Bulletin | 阿尔茨海默病的现状与未来

目前全球人口老龄化进展严重&#xff0c;中国已成为世界上老龄化最快的国家之一。随着人口老龄化&#xff0c;痴呆患者的数目急剧增加&#xff0c;阿尔茨海默病&#xff08;Alzheimers disease, AD&#xff09;作为痴呆的主要原因&#xff0c;已成为当今社会最为热点的话题之一…

Science年度十大科学突破出炉:韦伯望远镜高居榜首,AIGC、NASA主动撞击小行星紧随其后...

来源&#xff1a;FUTURE远见选编&#xff1a;FUTURE | 远见 闵青云 文&#xff1a;量子位 前脚韦伯望远镜运维科学家刚获得Nature年度十大人物&#xff1b;紧接着&#xff0c;Science也将韦伯望远镜评为年度最大科学突破&#xff01;今天&#xff0c;Science重磅发布2022年度科…

词袋、独热与词向量

亲爱的读者喵喵&#xff0c;由于一些事情&#xff0c;小夕最近情绪欠佳&#xff0c;导致昨天又失约没有更新文章...而且文章中萌气散失...小夕会尽快调整好哦&#xff0c;小夕依然萌萌嗒我们知道&#xff0c;传统的数据挖掘任务面向的是结构化数据。结构化数据很好理解&#xf…

人工智能会“偷走”潜艇的隐身能力吗?

更好的探测技术 不仅能使海洋变得透明&#xff0c;也许还会削弱核威慑力。潜艇的价值主要在于其隐蔽性。有一种名为“相互确保摧毁”的威慑战略&#xff0c;其关键在于尽量确保潜艇在核战争的第一次导弹打击中幸存下来&#xff0c;从而在第二次打击时发射导弹回击。因此&#x…

人工智能大地图之分布式人工智能篇

前言人工智能大地图系列文章更新啦&#xff01;大地图系列的文章是为了帮助即将入门和初步入门人工智能相关领域的喵喵从上帝视角看清整个人工智能学科的全貌&#xff08;好长的句子&#xff09;&#xff0c;小夕可不希望小夕的粉丝在研究了一年的人工智能某方向后&#xff0c;…

符合人类创作过程的AIGC:自动生成长故事的模型出现了

来源&#xff1a;机器之心报道编辑&#xff1a;小舟、蛋酱AI写文章还是得模仿人类的创作方法。在今天的人工智能领域&#xff0c;AI 写作神器层出不穷&#xff0c;技术和产品可谓日新月异。如果说 OpenAI 两年前发布的 GPT-3 在文笔上还稍欠火候&#xff0c;那么前段时间的 Cha…

Science:挑战传统理论,重塑联想学习概念

来源&#xff1a;brainnews编译作者&#xff1a;Young&#xff08;brainnews创作团队&#xff09;校审&#xff1a;Simon&#xff08;brainnews编辑部&#xff09;学会根据环境线索预测奖赏对生存至关重要。人们认为&#xff0c;动物通过在结果偏离预期时更新预测来学习预测奖赏…

【完结】史上最萌最认真的机器学习/深度学习/模式识别入门指导手册(四)

小夕再次感谢大家的关心&#xff0c;你们的小夕已经满血复活啦&#xff01;小夕会坚持为大家带来独一无二的干货和故事哦。前言有读者反映&#xff0c;ta若能完成这个系列的阶段三&#xff0c;就在他们实验室被奉为神了。因为他们实验室每个人人手一本《模式分类》&#xff0c;…

文本相似度

《统计学习方法》-李航 损失函数总结 概要 <div id"post_detail">NLP点滴——文本相似度 目录 前言字面距离common lang库相同字符数莱文斯坦距离(编辑距离)定义实现方式Jaro距离定义实现方式应用SimHash定义基本流程相似性度量存储索引实现应用语义相似性背…

「可解释知识图谱推理」最新方法综述

来源&#xff1a;图灵人工智能近年来&#xff0c;以深度学习模型为基础的人工智能研究不断取得突破性进展&#xff0c;但其大多具有黑盒性&#xff0c;不 利于人类认知推理过程&#xff0c;导致高性能的复杂算法、模型及系统普遍缺乏决策的透明度和可解释性。在国 防、医疗、网…

小夕的算法入门之路

小夕都快要成XX入门指导专业户了QAQ&#xff0c;小夕是要写人工智能和计算机干货的啊喂~好吧&#xff0c;问小夕如何入门算法的小伙伴太多了&#xff0c;还是写一篇文章吧。小夕还收到了“如何准备托福”和“如何准备考研英语”的求助&#xff0c;然而小夕没有考过&#xff0c;…

AIGC发展路径思考:大模型工具化普及迎来新机遇

来源&#xff1a;腾讯科技摘要&#xff1a;当前&#xff0c;AIGC引发社会关注&#xff0c;尤其是大模型和开源模式的推动&#xff0c;让AIGC有望成为AI应用落地的新领域。一方面大模型和开源加速降低AIGC应用门槛并拓展应用范围&#xff1b;另一方面AI与创新的界限进一步模糊&a…

0基础讲解机器学习算法-朴素贝叶斯分类器

朴素贝叶斯分类器可以说是最经典的基于统计的机器学习模型了。首先&#xff0c;暂且不管贝叶斯是什么意思&#xff0c;朴素这个名字放在分类器中好像有所深意。 一查&#xff0c;发现这个分类器的英文是“Nave Bayes”。Nave&#xff08;读作“哪义务”&#xff09;即幼稚的、…

你可以在虚拟世界里过上美好生活吗?

来源&#xff1a;混沌巡洋舰时间来到 2095 年。地球表面满目疮痍&#xff0c;核战争和气候变化引发一场灾难。你只能过着困苦的生活&#xff0c;躲避匪帮&#xff0c;避开地雷。你的主要愿望就是活下去。或者&#xff0c;你也可以将自己的肉体锁存在安保严密的仓库里&#xff0…

web of science,SSCI索引,带你入门!

第一步;选择数据库&#xff0c;一般选择web of science 核心文集 第二步&#xff1a;在更多设置中选择web of science 第三步&#xff1a;点击被引频次后面的数字 第四部&#xff1a;点击查看其他的被引频次计数 根据自己引用的选择次数 注意事项&#xff1a;web of sci…

陶哲轩破解数十年前几何猜想,用反例证明它在高维空间不成立,同行:推翻的方式极尽羞辱...

Pine 萧箫 发自 凹非寺量子位 | 公众号 QbitAI又一个重要数学猜想&#xff0c;被陶哲轩和他的博士后破解了&#xff01;此前陶哲轩在博客上发了个小预告&#xff0c;就已经有不少人赶来围观&#xff1a;看起来是个大新闻。现在&#xff0c;不少人期待的正式版论文&#xff0c;终…