逻辑回归与朴素贝叶斯的战争

0

一起走过的

 

首先,小夕带领大家回顾一下文章《逻辑回归》、《Sigmoid与Softmax》、《朴素贝叶斯》中的几点内容,这几点内容也是本文的前置知识:

1. 逻辑回归模型的表达式(假设函数):,其中

2. 逻辑回归模型本质上是二类分类问题中其中一个类别的后验概率

3. 用于二类分类的sigmoid函数只是用于多类分类的softmax函数的一个特例。

4. 朴素贝叶斯模型本质上计算并比较的是某样本x与某类别y的联合概率

 如果对上述前置知识有疑问,小夕强烈建议再参考那三篇文章理解一下哦。

 

好了,上面的知识在本文中已默认为常识,不再额外解释啦~

1

战争导火索

在朴素贝叶斯模型中,P(x,y)是基于贝叶斯定理和独立性假设来近似得到的,而不是像回归模型计算P(y|x)那样直接计算出来。那么有没有一种表示来直接得到P(x,y)的表达式呢?

 

还记得我们在《sigmoid与softmax》中定义的,小夕将定义为向量w1与w2的“亲密度”,而某个样本x属于某个类别的后验概率P(y|x)就可以解读为“类别y与样本x的密度所有类别与样本x密度之和的比例,用数学语言(softmax)描述就是这样子的(K为类别数,wj是小夕解读过的描述类别j的向量,同时也是大众理解的模型参数):

 

 

仔细观察一下小夕用亲密度解释后验概率的这句话,有没有发现这句话非常生动的描绘了P(y|x)呢?(不是自夸啦\(//∇//)\,下文要用到...)

---> 固定住x,因此计算亲密度时忽略其他样本的存在(准确讲,忽略P(x)的分布情况),只关心当前的样本x。

 

那如果我们要描绘P(x,y)呢?描绘x与y的联合概率分布的话,肯定既要描绘出全部的y的情况,又要描绘出全部的x的情况,机智的你或许已经想到了,那我们不固定x了,而是考虑全部的x不就行啦。所以,某样本x与某类别y的联合概率P(x,y)就是“类别y与样本x的密度所有类别与所有样本密度之和的比例,也就是只需要让分母照顾到所有样本就行啦~所以:

 

 

没错,这就是朴素贝叶斯模型背后的东西,它本质上就是额外考虑了样本x自身分布情况的逻辑回归(多类时的softmax回归)。所以本质上,逻辑回归模型与朴素贝叶斯模型之间隔着的墙就是这个p(x)。一个优雅的数学公式总结一下:

 

 

于是机器学习模型基本上兵分两路:像朴素贝叶斯这种,通过计算样本x与类别y的联合分布来进行分类的机器学习模型被称为生成式模型;像逻辑回归这种,在固定住特定样本x的情况下,计算该样本x与类别y的条件分布来进行分类的机器学习模型被称为判别式模型。

 

有了这两个定义以后,战争爆发了。

2

战争

 

战争焦点:以朴素贝叶斯模型为代表的判别式模型与以逻辑回归为代表的生成式模型哪个更好呢?

 

理论上说,生成式模型不仅考虑(计算中包含)了后验概率,又包含了样本x自身的分布情况,因此比判别式模型涵盖更多的信息量,所以应该更准确才是。但是实际上,从历史战况来看,除了文本分类等个别任务外,判别式模型的代表,逻辑回归模型,往往比代表生成式模型的朴素贝叶斯模型表现更佳。

这是为什么呢?

从上文的朴素贝叶斯的公式可以看出,想要基于全部信息,来计算完整的p(x,y)其实是很困难的,因此需要像朴素贝叶斯一样做一些独立性假设才能近似计算p(x,y)。然而,这些假设又过度简化了p(x),使得它的估计很不准确,导致哪怕在朴素贝叶斯模型表现优异的场景下,它对各个p(x,y)的计算实际上都是很不准的。

 

在此,有一个小实验大家可以做一下:

用朴素贝叶斯分类器完成某个分类任务,记下分类器对每个预测结果的把握(即每个P(x,y))。然后把每个样本的每一维度的特征复制成两个。即让X=[x1,x2,x3…]变成X=[x1,x1,x2,x2,x3,x3…],然后再训练,然后看看对预测结果的把握有没有增大或减小。

我们知道,这样肯定不会带来任何额外的信息量,也不会改变p(x)的分布,然而,这样却会导致朴素贝叶斯增大对预测结果的把握度,也就是增大了对p(x,y)的估计值,这显然是大大的误差。

 

而判别式模型,由于固定了x值,所以不会考虑p(x)的问题,也就是说对p(x)的分布呈中立态度,自然不会因此引入额外的误差。而对于分类问题,去考虑和计算p(x)的分布情况本就是多此一举的,因此,反倒是判别式模型往往要优于生成式模型的。

 

所以,暂且就认为朴素贝叶斯模型战败了。

3

战后悄悄话

 

然而,就像朴素贝叶斯与逻辑回归这个生成式-判别式对,同样的战争蔓延到了分类之外的战场上...

 

欲知后事如何,且听小夕下回,也可能下下回,或者下下下回,或者...

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481228.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI年底上新,单卡1分钟生成3D点云,text-to 3D告别高算力消耗时代

来源:大数据文摘授权转载自HyperAI超神经作者:三羊OpenAI 年底冲业绩,半个多月前发布的 ChatGPT 广大网友还没玩明白,近日又悄么发布了另一利器--可以依据文本提示,直接生成 3D 点云的 PointE。text-to-3D:…

机器学习相关从业者如何兼顾理论与工程能力

理论与工程首先,小夕说一下自己目前对理论与工程的理解吧,这也是小夕当前研究理论和熟练工程时主要的出发点。(仅为个人思考,请勿当成真理理论注重的是学科中各个知识点的大一统,将各种散乱的算法、现象、技巧来归结到…

万字拆解!追溯ChatGPT各项能力的起源

导语一篇十分深度剖析GPT系列模型的文章,作者翻译成了中文,在这里分享给大家。来源:李rumor作者:符尧, yao.fued.ac.uk,爱丁堡大学 (University of Edinburgh) 博士生,本科毕业于北京大学与 彭昊&#xff0…

用excel做数据分析

我们先来看看某公司全国产品销售的报表(截取了部分) 某公司全国产品销售的报表通过货品销售数据案例,需反映如下结果: 货品销售情况货品交货情况销售货品结构构成货品销售区域构成货品按时交货与合格品综合评价 我们使用 excel 进…

消失了一周的小夕在玩什么啦?

啊,你们的小夕回来啦~有没有被吓到( ̄∇ ̄)0小夕在玩什么小夕,终于,在今天,把,各种deadline,完成了(Д )首先,小夕要像大家深深的说一声谢谢啦。好多天没有打开订阅号的后台…

第四届泰迪杯数据挖掘大赛

<script src"//g.alicdn.com/aliyun/goldeneye-deploy/0.0.1/static/goldeneye.js"></script> <link rel"stylesheet" href"//at.alicdn.com/t/font_422887_vrqbpml6oos.css"><!--top-header begin-->云栖社区博客问答聚…

一般化机器学习与神经网络

0前言机器学习的初学者很容易被各种模型搞得晕头转向。如果扎进各种模型的细节无法自拔的话&#xff0c;可能很难发现一般化的框架。如果你觉得神经网络是非常不同的机器学习模型&#xff0c;如果你觉得神经网络的各种新名词让你觉得这完全就是一片新天地&#xff0c;那么可能你…

扩散模型再发力!图灵奖得主Hinton团队提出:图像和视频全景分割新框架

来源&#xff1a;机器之心作者&#xff1a;Ting Chen 等 编辑&#xff1a;赵阳本文的创新点一方面在于能够在大型全景掩码上训练扩散模型&#xff0c;一方面在于可以同时适配图片和流媒体场景。全景分割是一项基本的视觉任务&#xff0c;该任务旨在为图像的每个像素指定语义标…

经典的K-means聚类算法

原理部分主要来自大牛zouxy09和trnadomeet两个人的博客&#xff1b;后面的代码详细讲解为自己精心编写 一、概述 非监督学习的一般流程是&#xff1a;先从一组无标签数据中学习特征&#xff0c;然后用学习到的特征提取函数去提取有标签数据特征&#xff0c;然后再进行分类器的训…

《Cell》发现免疫系统的“武器研发实验室”

来源&#xff1a;生物通如果B细胞是免疫系统的兵工厂&#xff0c;制造抗体来中和有害的病原体&#xff0c;那么被称为生发中心的微小生物结构就是它的武器开发设施。.淋巴结的生发中心簇充满了成熟的B细胞(红色)&#xff0c;点缀着进化程度较低的B细胞(绿色)。 如果B细胞是免…

机器学习从理论到工程的第一步-编程语言篇

前言在文章《机器学习从业者如何兼顾理论与工程》中&#xff0c;小夕对编程语言的选择进行了小小建议。鉴于有些同学对小夕建议的“主python&#xff0c;辅C&#xff0c;备用matlab和java”疑问较大&#xff0c;小夕在此详细解释一下&#xff0c;也欢迎大家补充新观点哦。为什么…

聚类算法当中的K-means算法如何去做天猫淘宝的推广任务

5 人赞同了该回答figure data-size"normal">data-size"normal">这个入口是全网人气新品池&#xff0c;我们今天所获取到的数据都是来源于这里。无论是C店还是B店&#xff0c;统统都有机会进来。这个平台最有价值的数据&#xff0c;就是可以告诉我们自…

通过双重众包预测 RNA 降解的深度学习模型

编辑 | 萝卜皮基于信使 RNA (mRNA) 的药物具有巨大的潜力&#xff0c;正如它们作为 COVID-19 疫苗的快速部署所证明的那样。然而&#xff0c;mRNA 分子的全球分布受到其热稳定性的限制&#xff0c;这从根本上受限于 RNA 分子对称为在线水解的化学降解反应的固有不稳定性。预测 …

线性代数应该这样讲(一)

前言小夕为什么要讲线性代数呢&#xff1f;因为有人已经做了机器学习一段时间了&#xff0c;竟然认为矩阵就是用来存储数据的。小夕表示非常震惊。而深刻透彻的理解核函数、PCA、LSI、谱聚类等以空间映射为理论核心的机器学习理论时&#xff0c;靠大学里教的那一套线性代数&…

震惊!丧心病狂的夕小瑶推出新一轮写作计划!

时至今日&#xff0c;距离小夕发布的第一篇正式文章已经过去整三个月啦。今天又回头看了一下自己写的第一篇文章&#xff0c;不禁有点感慨“文风”变了这么多&#xff0c;甚至有点受不了第一篇文章中的萌气了\(//∇//)\然后文章还写的不怎么样。。。虽然第一篇文章写的好差&…

LeCun预言的自监督模型来了:首个多模态高性能自监督算法,语音、图像文本全部SOTA...

来源&#xff1a;机器之心编辑&#xff1a;nhyilin人类似乎对不同的学习模式有着相似的认知&#xff0c;机器也应该如此&#xff01;>>>>自监督学习能在各种任务中学习到分层特征&#xff0c;并以现实生活中可使用的海量数据作为资源&#xff0c;因此是走向更通用人…

史上最清楚的BP算法详解

前馈神经网络 在文章《逻辑回归到神经网络》&#xff08;以下简写《LR到NN》&#xff09;中&#xff0c;小夕为大家描述了一个从逻辑回归延伸到神经网络的过程。在《一般化机器学习与神经网络》中&#xff0c;小夕阐述了神经网络的一般性。这一篇会完全进入神经网络的状态&…

基于主动学习算法减少人工标注量,提升文本标注效率的方案探究

基于主动学习算法减少人工标注量&#xff0c;提升文本标注效率的方案探究阅读 451收藏 232018-06-26原文链接&#xff1a;yq.aliyun.comOPPO技术开放日第三期&#xff0c;未来的探索 AI&AR的实践应用juejin.im项目地址: https://github.com/crownpku/Chinese-Annotator 自…

具有生物启发训练方法的物理深度学习:物理硬件的无梯度方法

编辑 | 绿萝对人工智能不断增长的需求推动了对基于物理设备的非常规计算的研究。虽然此类计算设备模仿了大脑启发的模拟信息处理&#xff0c;但学习过程仍然依赖于为数字处理优化的方法&#xff0c;例如反向传播&#xff0c;这不适合物理实现。在这里&#xff0c;来自日本 NTT …

BP算法是从天上掉下来的吗?

第二个标题&#xff1a;一般而特殊的前馈神经网络前馈神经网络在文章《逻辑回归到神经网络》&#xff08;以下简写《LR到NN》&#xff09;中&#xff0c;小夕为大家描述了一个从逻辑回归延伸到神经网络的过程。在《一般化机器学习与神经网络》中&#xff0c;小夕阐述了神经网络…