课程 |《知识图谱》第一期



课程详情

 


课程名称: 

 

《知识图谱》第一期 


报名方式:

 

点击文末“阅读原文”,即可享受参团优惠报名哦!


主讲老师:


王昊奋  著名知识图谱专家

博士毕业于上海交通大学,CCF术语专委会执委,中文信息学会语言与知识计算委员会副秘书长,共发表75余篇高水平论文。中文知识图谱zhishi.me创始人,OpenKG联盟发起人之一,其带队构建的语义搜索系统在Billion Triple Challenge中荣获全球第2名;在著名的本体匹配竞赛OAEI的实体匹配任务中斩获得全球第1名。曾主持并参与多项国家自然科学基金、863重大专项和国家科技支撑项目,以学术负责人身份参与Paypal、Google、Intel、IBM、百度等企业的合作项目。

 

课程简介:


本次的知识图谱课程主要包括三大部分:

1.  知识图谱的工程方法论。指导学员了解并掌握知识图谱的基本概念和发展历史,梳理清知识图谱的技术体系,掌握知识图谱的核心技术原理,建立知识图谱工程的方法论思维。

2.   知识图谱的实战技术。从实战出发,围绕知识表示、知识抽取、语义搜索、知识问答、知识推理、知识融合等系统性介绍知识图谱相关的实战技术,使得学员具备研发知识图谱相关应用的基础能力。

3.  知识图谱的典型应用。结合医疗、金融、电商等实际应用场景,介绍知识图谱各个技术点的实际应用落地方式,使得学员具备结合自身背景开展知识图谱技术实践的应用能力。

面向人群:


1.  希望学习知识图谱的学生;
2.  希望了解知识图谱实战技术的IT从业人员;
3.  未来希望成为知识图谱工程师的求职者;
4.  想在知识图谱方向进行深入研究者。


学习收益:


通过本课程的学习,学员将会收获:

1. 帮助学员系统性的掌握知识图谱的核心技术原理,结合近期研究成果,学习从基本概念到各个先进算法和技术的转化思路
2. 了解国内外典型的开源知识库数据及技术资源
3. 实践与理论结合,培养学员面对工程及学术问题的思考解决能力
4. 基于百科知识进行各项核心技术的实例训练,并结合医疗、金融、电商等行业应用帮助学员快速积累知识图谱工程项目经验
5. 对有志于从事知识问答工作或学术研究的学员,提供IBM Watson系统实现原理的讲解与指导

     

开课时间:

 

2017年10月24日

 

学习方式:
  

在线直播,共11次课,每次2小时

每周2次(周二、四,20:00 - 22:00

直播后提供录制回放视频,可在线反复观看,有效期1年


课程大纲:

       

第一课:  知识图谱概论            
 

    1.  知识图谱的起源和历史
    2.  典型知识库项目简介
    3.  知识图谱应用简介
    4.  本次课程覆盖的主要范围:知识表示与建模、知识抽取与挖掘、知识存储、知识融合、知识推理、语义搜索、知识问答和行业知识图谱应用剖析等内容。
 
第二课:  知识表示与知识建模         
 
    1.  早期知识表示简介
    2.  基于语义网的知识表示框架
         a.  RDF和RDFS
         b.  OWL和OWL2 Fragments
         c.  SPARQL查询语言
         d.  Json-LD、RDFa、HTML5 MicroData等新型知识表示
    3.   典型知识库项目的知识表示
    4.   基于本体工具(Protege)的知识建模最佳实践
 
第三课:  知识抽取与挖掘I
 
    1.  知识抽取任务定义和相关比赛:实体识别、关系抽取和事件抽取
    2.  面向结构化数据(关系数据库)的知识抽取,包括D2RQ和R2RML等转换与映射规范与技术介绍
    3.  面向半结构化数据(Web tables, 百科站点等)的知识抽取
         a.  基于正则表达式的方法
         b.  Bootstrapping和Wrapper Induction介绍
    4.  实践展示:基于百科数据的知识抽取
     
第四课:  知识抽取与挖掘II
 
    1.  面向非结构化数据(文本)的知识抽取
         a.  基于本体的知识抽取,包括NELL和DeepDive系统介绍
         b.  开放知识抽取,包括TextRunner、Reverb和OLLIE等系统介绍
    2.  知识挖掘
         a.  知识内容挖掘:实体消歧与链接
         b.  知识结构挖掘:关联规则挖掘与社区发现
         c.  知识表示学习与链接预测,包括TransE和PRA等算法介绍    
 
第五课:  知识存储
 
    1.  基于关系数据库的存储设计,包括各种表设计和索引建立策略
    2.  基于RDF的图数据库介绍
         a.  开源数据库介绍:Apache Jena、Sesame、gStore、RDF-3X等
         b.  商业数据库介绍:Virtuoso、AllegroGraph、BlazeGraph等
    3.   原生图数据库介绍,包括Neo4j、OrientDB、Titan和Cayley等
    4.  实践展示:使用Apache Jena存储百科知识,并使用Fuseki构建图谱查询服务
 
第六课:  知识融合
 
    1.  知识融合任务定义和相关竞赛:本体对齐和实体匹配
    2.  本体对齐基本流程和常用方法
         a.  基于Linguistic的匹配
         b.  基于图结构的匹配
         c.  基于外部知识库的匹配
    3.  实体匹配基本流程和常用方法
         a.  基于分块的多阶段匹配
         b.  基于规则(配置或通过学习)的实体匹配
    4.  知识融合工具介绍:包括Falcon-AO、Silk、PARIS、DEDUPE、LIMES和KnowledgeVault
    5.  实践展示:使用Falcon-AO融合百度百科与维基百科中的知识
 
第七课:  知识推理
 
    1.  本体知识推理简介与任务分类,包括概念可满足性、概念包含、实例分类和一致性检测等
    2.  本体推理方法与工具介绍
         a.  基于Tableaux运算的方法:Fact++、Racer、Pellet和Hermit等
         b.  基于一阶查询重写的方法:Ontology-based Data Access的Ontop等
         c.  基于产生式规则的方法(如Rete):Jena、Sesame和OWLIM等
         d.  基于逻辑编程(如Datalog)改写的方法:KAON2和RDFox等
     3.  实践展示:使用Jena完成百科知识上的上下位推理、缺失类别补全和一致性检测等
 
第八课:  语义搜索
 
   1.  语义搜索概述,包括Knowledge Card、Rich Snippet、Facebook Graph Search等
   2.  基于语义标注的网页搜索
         a.  Web Data Commons项目介绍
         b.  排序算法介绍,扩展BM25
   3.  基于图谱的知识搜索
         a.  本体搜索(ontology lookup)
         b.  探索式知识检索,包括查询构造、结果排序和分面(facets)推荐
   4.  知识可视化,包括本体、查询、结果等的展现方式和可视化分析
   5.  实践展示:使用ElasticSearch实现百科数据的语义搜索
 
第九课: 知识问答I
 
    1.  知识问答概述和相关数据集(QALD和WebQuestions)
    2.  知识问答基本流程
    3.  知识问答主流方法介绍
         a.  基于模板的方法,包括模板定义、模板生成和模板匹配等步骤
         b.  基于语义解析的方法,包括资源映射,逻辑表达式候选生成与排序等
         c.  基于深度学习的方法
 
第十课:  知识问答II
 
    1.  IBM Watson问答系统及核心组件详细解读
         a.  问句理解
         b.  候选答案生成
         c.  基于证据的答案排序
    2.  实践展示:面向百科知识的问答baseline实现
 
第十一课:  行业知识图谱应用
 
    1.  行业知识图谱特点
    2.  行业知识图谱应用,包括金融、医疗、数字图书馆等领域应用
    3.  行业知识图谱构建与应用的挑战
    4.  行业知识图谱生命周期定义和关键组件

 

 

常见问题:
  

Q: 会有实际上机演示和动手操作吗?
A: 有,几乎每节课,老师均会准备上机演示部分,学员可以学习老师的实践经验。
Q: 参加本门课程有什么要求?
A: 有一定Python编程能力,有基本大学数学基础。

Q: 有课外学习资料吗?

A: 有,老师会根据情况提供讲义,并给出进阶学习资源与项目的建议。

Q: 本课程怎么答疑?
A: 推荐大家到小象问答社区(wenda.chinahadoop.cn)提问,方便知识的沉淀,老师会集中回答,不会因为QQ群信息刷屏而被老师错过。也会有专门的QQ班级群,同学们可以针对课上知识的问题,或者自己学习与动手实践中的问题,向老师提问,老师会进行相应解答。

 

Q:在哪里上课?

A:课程直播和回放都在小象学院官网(http://www.chinahadoop.cn)上进行,不需要其他直播软件;如果希望上下班路上观看,可以下载小象学院app进行缓存。

 

联系方式:

 

手机:17746593070

邮件:admin@chinahadoop.cn

网站:http://www.chinahadoop.cn

客服微信:17746593070




OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

点击“阅读原文”,即可享受参团优惠报名哦!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/481042.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【LeetCode】3月30日打卡-Day15

题1 描述 0,1,n-1这n个数字排成一个圆圈,从数字0开始,每次从这个圆圈里删除第m个数字。求出这个圆圈里剩下的最后一个数字。 例如,0、1、2、3、4这5个数字组成一个圆圈,从数字0开始每次删除第3个数字,则删除的前4个数…

新闻 | 聚焦技术领域现状与发展阿里巴巴知识图谱专场亮相云栖大会 阿里知识图谱亮相云栖大会产学深度交流推进业务创新

14日,阿里巴巴知识图谱正式亮相云栖大会,本次活动邀请到诸多阿里技术专家与学界领军人物参会,一同探讨知识图谱领域的现状与远景,推动产业界与学术界深度交流。 知识图谱将信息表达成更接近人类认知世界的形式,提供了帮…

100篇论文串讲对话系统前世今生

不可以不可以,都在忙着过年呢,小夕怎么能推这种文章呢╮(╯▽╰)╭话说,大年初一你萌怎么能戳进来这种文章!快,赶紧承认你是卖萌屋的真爱粉( ̄∇ ̄)~小屋今天不卖干货,只送…

【LeetCode】3月31日打卡-Day16-数组排序算法汇总

排序算法一览 快排 插入排序 希尔排序 桶排序 计数排序 归并排序 桶排序 class Solution {public int[] sortArray(int[] nums) {if(nums.length <1)return nums;qSort(nums,0,nums.length-1);selectSort(nums);insertSort(nums);shellSort(nums);bucketSort(nums);countS…

如何打造高质量的NLP数据集

今天发烧睡了一天T^T&#xff0c;睡醒后突然想起这个都快凉透的订阅号&#xff0c;刷了刷知乎&#xff0c;刷到了这个问题知乎&#xff1a;如何打造高质量的机器学习数据集&#xff1f; https://www.zhihu.com/question/333074061/answer/773825458于是就有了暖暖卖萌屋的冲动(…

郑杰 | 如何拿回我们自己的医疗数据?

本文转载自公众号造就&#xff0c;作者郑杰&#xff0c;树兰医疗总裁&#xff0c;OMAHA 开放医疗与健康联盟发起人。 造就 大家好&#xff0c;我是郑杰&#xff0c;来自于杭州。我出生于一个医生世家&#xff0c;也在医院边上长大&#xff0c;但大学里我读的是计算机专业&#…

【Java】Object类、Objects类和日期类

1 Object类 Object类是所有类的父类&#xff0c;每个类都直接或间接的继承自该类 1.1 Object.toString() 作用&#xff1a;打印输出类信息 重写前&#xff1a;打印输出包名类名地址值 重写后&#xff1a;打印输出属性值 1.2 Object.equals() 作用&#xff1a;比较两个对象…

问题对语义相似度计算-参赛总结

时间段&#xff1a;2018.06.10~2018.07.20问题对语义相似度计算&#xff08;从0到0.5&#xff09; 短短一个多月的时间&#xff0c;我学到了很多很多东西&#xff0c;从一个呆头小白初长成人。首先&#xff0c;必须感谢我的导师能给我这个机会从头到尾完整地参加这次比赛&#…

后BERT时代:15个预训练模型对比分析与关键点探究

前言在小夕之前写过的《NLP的游戏规则从此改写&#xff1f;从word2vec, ELMo到BERT》一文中&#xff0c;介绍了从word2vec到ELMo再到BERT的发展路径。而在BERT出现之后的这大半年的时间里&#xff0c;模型预训练的方法又被Google、Facebook、微软、百度、OpenAI等极少数几个玩得…

技术论坛 | 10月22日在微软:“行业知识图谱+ ”论坛通知

大数据创新学习中心 《国务院新一代人工智能发展规划》的“跨媒体分析推理技术”强调“重点突破跨媒体统一表征、关联理解与知识挖掘、知识图谱构建与学习、知识演化与推理、智能描述与生成等技术”&#xff0c;为进一步了解知识图谱技术的应用场景&#xff0c;2017年10月22日在…

【Java】StringBuilder类、包装类

1 StringBuilder类 1.1 String的劣势 String类中字符串是常量&#xff0c;创建后不能更改 //底层是final修饰的数组 private final byte[] value;字符串相加&#xff0c;内存中会存在多个字符串&#xff0c;占用空间多&#xff0c;效率低下 1.2 StringBuilder的优势 Strin…

从贪心选择到探索决策:基于强化学习的多样性排序

本文主要介绍发表在SIGIR2018上的论文From Greedy Selection to Exploratory Decision-Making: Diverse Ranking with Policy-Value Networks​www.bigdatalab.ac.cn这篇论文利用强化学习来解决多样性排序问题&#xff0c;整体思路和AlphaGo类似。Motivation在信息检索领域一个…

对话系统聊天机器人的设计艺术(上)

前言关于本文的阅读方式&#xff1a;这不是一篇学术综述&#xff0c;也不是单纯的科普文&#xff0c;而是试图从目标出发来渐进式的思考对话系统的设计&#xff0c;顺便科普。因此本文不适合跳读&#xff0c;也不适合5分钟式浏览&#xff0c;而是适合在夜深人静的时候一个人...…

鲍捷 | 知识表示——面向实战的介绍

本文转载自文因互联 2016 年 6 月份组织的第一期北京知识图谱学习小组 Wiki。 知识表示&#xff08;Knowledge Representation&#xff0c;KR&#xff0c;也译为知识表现&#xff09;是如何将结构化数据组织&#xff0c;以便于机器处理和人的理解的方法。从结构推导出新的结构&…

【Java】Collection集合和泛型

学习目标&#xff1a;会存取&#xff0c;掌握特性 学习方式&#xff1a;学习顶层接口/抽象类的共性方法&#xff0c;使用底层的子类创建对象使用 1 集合框架 集合类的继承体系&#xff1a; Collection接口&#xff1a; 1) List接口&#xff1a;有序、允许重复、有索引 1.1) Ar…

]搜索引擎的文档相关性计算和检索模型(BM25/TF-IDF)

搜索引擎的检索模型-查询与文档的相关度计算1. 检索模型概述搜索结果排序时搜索引擎最核心的部分&#xff0c;很大程度度上决定了搜索引擎的质量好坏及用户满意度。实际搜索结果排序的因子有很多&#xff0c;但最主要的两个因素是用户查询和网页内容的相关度&#xff0c;以及网…

对话系统(任务型、检索式、生成式对话论文与工具串讲)

Motivation 对话是一个很大的概念&#xff0c;有非常非常多的子问题&#xff0c;刚入坑的小伙伴很可能迷失在对话的一小块区域里无法自拔&#xff0c;本文就是为解决这一类问题的。希望读者在看完本文后&#xff0c;可以理清楚对话的每个概念为什么而存在&#xff0c;以及它在整…

综述 | 知识图谱向量化表示

本文作者&#xff1a;窦洪健&#xff0c;2016级研究生&#xff0c;目前研究方向为推荐系统、文本生成&#xff0c;来自中国人民大学大数据管理与分析方法研究北京市重点实验室。 本文收录于RUC AI Box专栏&#xff0c;为该专栏特供稿件&#xff08;https://zhuanlan.zhihu.com/…