论文浅尝 | Know-Evolve: Deep Temporal Reasoning for Dynamic KG

论文链接:https://arxiv.org/abs/1705.05742

 

对于事件数据,需要动态更新的知识图谱来保存知识图谱中关系的时许信息。本文提出了 Know-Evolve 这种基于神经网络的动态知识图谱来学习实体在不同时刻的表示。在动态知识图谱中,事件由四元组表示,相比于普通的三元组,增加了时间信息,因此在动态知识图谱中,实体之间的可能通过多个相同的关系连接,但是这些关系会关联到不同的时序信息。Know-Evolve 中,使用时间点过程(temporal point process)来描述时间点的影响。


在时间点过程中,某一时刻发生某事件的概率可以表示为

其中

具体而言,Know-Evolve 中使用了Rayleigh过程来表示 \lambda(t),并使用一个神经网络来拟合 Rayleigh 过程的参数,对于发生在时刻 t 的四元组,有

其中

上式中,V 表示实体对应的向量表示,R 表示关系对应的矩阵,t-1 表示实体在上次被更新后的状态, \bar{t} 表示头实体或尾实体中最后被更改的时间。


此外,每次将新的四元组加入到动态知识库后,动态知识库中与该四元组相关的实体也会相应地进行更新,更新地过程用一个 RNN 来表示

对于头实体,有

对于尾实体,有

模型的训练通过最大化训练数据中四元组发生概率进行,对应的损失函数为对数损失函数

在损失函数中,后一项需要对头实体,关系,尾实体进行遍历,这个计算量是很大的,本文中使用了采样的方法来近似计算得到这部分的值。


实验使用了GDELTICEWS这两个时序知识库,相比于其他的方法,本文的结果均有限制的提升。

 

论文笔记整理:王旦龙,浙江大学硕士,研究方向为自然语言处理。



OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480799.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

阿里P8架构师谈:Docker容器的原理、特征、基本架构、与应用场景

什么是容器? 一句话概括容器:容器就是将软件打包成标准化单元,以用于开发、交付和部署。 容器镜像是轻量的、可执行的独立软件包 ,包含软件运行所需的所有内容:代码、运行时环境、系统工具、系统库和设置。 容器化软…

中国电网招聘 计算机岗位

1.解密2018国家电网校园招聘,院校、专业、待遇盲区统统扫除! 2018国家电网校园招聘国家电网作为国内乃至世界知名的企业集团,是令无数求职者心仪的工作单位。那么如何才能进国家电网工作呢?国家电网的待遇究竟有传说中的那么好吗&…

系统设计:github上学习如何设计大型系统的项目

https://github.com/donnemartin/system-design-primer/blob/master/README-zh-Hans.md 系统设计是一个很宽泛的话题。在互联网上,关于系统设计原则的资源也是多如牛毛。这个仓库就是这些资源的组织收集,它可以帮助你学习如何构建可扩展的系统。

高并发编程系列:NIO、BIO、AIO的区别,及NIO的应用和框架选型

谈到并发编程就不得不提到NIO,以及相关的Java NIO框架Netty等,并且在很多面试中也经常提到NIO和AIO、同步和异步、阻塞和非阻塞等的区别。我先简短介绍下几个NIO相关的概念,然后再谈NIO重点掌握内容,以及Java NIO框架选型。 高并…

论文浅尝 | 基于神经网络的推理(DeepMind Relational Reasoning)

本文转载自公众号:徐阿衡。论文:A simple neural network module for relational reasoning(2017)github代码: https://github.com/siddk/relation-network这篇回顾下 DeepMind 2017 年发表的关系推理方面的工作,Relational Networks(RNs)。关…

拒绝无脑试错:写给萌新的“科学炼丹”入门手册

近期在订阅号后台和文章评论区review了一下大家的问题,发现很多小伙伴现在已经把机器学习、深度学习的理论基础打好了,但是真正要解决一个现实中的算法问题的时候经常两手抓瞎,一顿毫无目的乱试,甚至认为模型表现不好一定是调参不…

箱线图和散点图叠加图形的绘制——R language

前几日偶然从科学网上看到了一副特别漂亮的统计图形,如下图(摘自博文:http://blog.sciencenet.cn/blog-397960-456174.html)所示:感觉美翻了都,刚好在学习R,又遇到课题组有一些数据要处理,就花了大约一天的…

企业战略咨询方法:学习SWOT分析

文章目录概述分析目标分析内容分析步骤几个例子1. Mbalib网站的SWOT2. 复杂的、全面的SWOT分析3. 一个SWOT矩阵4. 另一个SWOT矩阵5. POWER SWOT分析法概述 SWOT分析是企业战略咨询常用的方法。然而,仔细搜索比对网上资料和各类管理咨询书籍,分析的目标、…

肖仰华 | 知识图谱与认知智能

本文转载自公众号:知识工场。肖仰华教授1万5千字雄文带您深度剖析知识图谱与认知智能,对知识图谱技术与落地应用中的一系列关键问题做了系统梳理与解答。肖仰华博士,复旦大学计算机科学与技术学院教授,博士生导师,知识…

Spring Cloud的核心成员、以及架构实现详细介绍

微服务架构系列 高并发架构系列:服务注册与发现的实现原理、及实现优劣势比较 阿里P8架构师谈:Restful、SOAP、RPC、SOA、微服务之间的区别 阿里P8架构师谈:微服务技术架构、监控、Docker、服务治理等体系 阿里P8架构师谈:Dubb…

调参侠的自我修养——深度学习调参秘籍

这是一篇写给萌新的“科学炼丹”手册 前言 近期在订阅号后台和文章评论区review了一下大家的问题,发现很多小伙伴现在已经把机器学习、深度学习的理论基础打好了,但是真正要解决一个现实中的算法问题的时候经常两手抓瞎,一顿毫无目的乱试&am…

NLP通用模型decaNLP诞生,一个模型搞定十大自然语言常见任务

然而近日,Salesforce发布了一项新的研究成果:decaNLP——一个可以同时处理机器翻译、问答、摘要、文本分类、情感分析等十项自然语言任务的通用模型。Salesforce的首席科学家RichardSocher表示:我们的decaNLP就好比NLP领域的瑞士军刀&#xf…

咨询报告生成:使用python生成pptx格式的报告

已经有人做了,思路和自己想做的一个模式差不多,见模式一: 先做好ppt模板用python计算数据,生成图形用python调用模板,将图形插入pptx页面中,生成分析报告 模式二与模式一的差别在第三步:使用R…

产品技术人必备干货:产品开发流程(完整版)

产品技术开发流程 “ 产品开发流程涉及的人员从产品经理到设计师、前端、后端等等一系列人员,这篇文章主要关于产品开发的完整流程,希望对产品技术人员有一定的参考价值。 一:产品概念设计:MRD 产品开发流程步骤第一步&#xf…

论文浅尝 | 用异源监督进行关系抽取:一种表示学习方法

Citation: Liu, L., Ren, X., Zhu, Q., Zhi, S., Gui, H., Ji, H., & Han, J.(2017). Heterogeneous Supervision for Relation Extraction: A RepresentationLearning Approach. Retrieved from http://arxiv.org/abs/1707.00166动机现有的关系抽取方法严重依赖于人工标注…

SQuAD文本理解挑战赛十大模型解读

教机器学会阅读是近期自然语言处理领域的研究热点之一,也是人工智能在处理和理解人类语言进程中的一个长期目标。得益于深度学习技术和大规模标注数据集的发展,用端到端的神经网络来解决阅读理解任务取得了长足的进步。 转载:https://blog.cs…

万字长文,知识图谱构建技术综述

文章来源:丁香大数据 前言 知识图谱,即一种特殊的语义网络,它利用实体、关系、属性这些基本单位,以符号的形式描述了物理世界中不同的概念和概念之间的相互关系。为什么说知识图谱对于信息检索、推荐系统、问答系统中至关重要,我…

查理·芒格:分享12个顶级思维模型

网络资料整理,另见:https://blog.csdn.net/UFv59to8/article/details/79695476

技术如何转型产品经理

我知道很多做技术的朋友在积极寻找转型的机会,从程序员转型到产品经理,或者程序员转型到运营、市场等。 怎样转? 转型前后的心态等?有没有具体的方法或者步骤?也许本文能帮你理清不少思路。 做技术出身的朋友很多,最…

基于BERT的多模学习——VL-BERT篇

前言 BERT的出现让NLP发展实现了一个大飞跃,甚至有大佬说NLP已经没有可以做的啦,后面就是拼机器拼money了。但是,我认为任何领域的进步之后都会有更苛刻的要求,科研没有尽头,需求也永远无法满足。而多模态&#xff0c…