论文浅尝 | 利用Lattice LSTM的最优中文命名实体识别方法

本文转载自公众号:机器之心




选自arXiv

作者:Yue Zhang、Jie Yang

机器之心编译

参与:路、王淑婷


近日,来自新加坡科技设计大学的研究者在 arXiv 上发布了一篇论文,介绍了一种新型中文命名实体识别方法,该方法利用 Lattice LSTM,性能优于基于字符和词的方法。与基于字符的方法相比,该模型显性地利用词和词序信息;与基于词的方法相比,lattice LSTM 不会出现分词错误。这篇论文已被 ACL 2018 接收。


作为信息抽取的一项基本任务,命名实体识别(NER)近年来一直受到研究人员的关注。该任务一直被作为序列标注问题来解决,其中实体边界和类别标签被联合预测。英文 NER 目前的最高水准是使用 LSTM-CRF 模型实现的(Lample et al., 2016; Ma and Hovy, 2016; Chiu and Nichols, 2016; Liu et al., 2018),其中字符信息被整合到词表征中。


中文 NER 与分词相关。命名实体边界也是词边界。执行中文 NER 的一种直观方式是先执行分词,然后再应用词序列标注。然而,分割 → NER 流程可能会遇到误差传播的潜在问题,因为 NE 是分割中 OOV 的重要来源,并且分割错误的实体边界会导致 NER 错误。这个问题在开放领域可能会很严重,因为跨领域分词仍然是一个未解决的难题(Liu and Zhang, 2012; Jiang et al., 2013; Liu et al., 2014; Qiu and Zhang, 2015; Chen et al., 2017; Huang et al., 2017)。已有研究表明,中文 NER 中,基于字符的方法表现要优于基于词的方法(He and Wang, 2008; Liu et al., 2010; Li et al., 2014)。


640?wx_fmt=png

图 1:词-字符网格。


基于字符的 NER 的一个缺陷在于无法充分利用显性的词和词序信息,而它们是很有用的。为了解决这一问题,本论文研究者利用 lattice LSTM 来表征句子中的 lexicon word,从而将潜在词信息整合到基于字符的 LSTM-CRF 中。如图 1 所示,研究者使用一个大型自动获取的词典来匹配句子,进而构建基于词的 lattice。因此,词序如「长江大桥」、「长江」和「大桥」可用于语境中的潜在相关命名实体消歧,如人名「江大桥」。


由于在网格中存在指数级数量的词-字符路径,因此研究者利用 lattice LSTM 结构自动控制从句子开头到结尾的信息流。如图 2 所示,门控单元用于将来自不同路径的信息动态传送到每个字符。在 NER 数据上训练后,lattice LSTM 能够学会从语境中自动找到更有用的词,以取得更好的 NER 性能。与基于字符和基于词的 NER 方法相比,本论文提出的模型的优势在于利用利用显性的词信息而不是字符序列标注,且不会出现分词误差。


640?wx_fmt=png

图 2:Lattice LSTM 结构。


结果显示该模型显著优于基于字符的序列标注模型和使用 LSTMCRF 的基于词的序列标注模型,在不同领域的多个中文 NER 数据集上均获得最优结果。


模型


研究者遵循最好的英文 NER 模型(Huang et al., 2015; Ma and Hovy, 2016; Lample et al., 2016),使用 LSTM-CRF 作为主要网络结构。形式上,指定输入句子为 s = c_1, c_2, . . . , c_m,其中 c_j 指第 j 个字符。s 还可以作为词序列 s = w_1, w_2, . . . , w_n,其中 w_i 指句子中的第 i 个词,使用中文分词器获得。研究者使用 t(i, k) 来指句子第 i 个词中第 k 个字符的索引 j。以图 1 中的句子为例。如果分词是「南京市 长江大桥」,索引从 1 开始,则 t(2, 1) = 4 (长),t(1, 3) = 3 (市)。研究者使用 BIOES 标记规则(Ratinov and Roth, 2009)进行基于词和基于字符的 NER 标记。


640?wx_fmt=png

图 3:模型。


640?wx_fmt=png

表 4:在开发集上的结果。


640?wx_fmt=png

表 5:在 OntoNotes 上的主要结果。


论文:Chinese NER Using Lattice LSTM


640?wx_fmt=png


  • 论文链接:https://arxiv.org/abs/1805.02023

  • 项目链接:https://github.com/jiesutd/LatticeLSTM


摘要:我们研究了用于中文命名实体识别(NER)的 lattice LSTM 模型,该模型对输入字符序列和所有匹配词典的潜在词汇进行编码。与基于字符的方法相比,该模型显性地利用词和词序信息。与基于词的方法相比,lattice LSTM 不会出现分词错误。门控循环单元使得我们的模型能够从句子中选择最相关的字符和词,以生成更好的 NER 结果。在多个数据集上的实验证明 lattice LSTM 优于基于词和基于字符的 LSTM 基线模型,达到了最优的结果。640?wx_fmt=png



OpenKG.CN


中文开放知识图谱(简称OpenKG.CN)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/480540.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最全MySQL面试60题和答案

Mysql中有哪几种锁? 1.表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 2.行级锁:开销大,加锁慢;会出现死锁;…

中文幽默语料库构建与计算项目(幽默等级识别,幽默类型识别,隐喻类型识别,隐喻情绪识别)

ChineseHumorSentiment chinese Humor Detection or Computation based on corpus and nlp methods, 基于语料库与NLP方法的中文幽默计算与检测项目 项目地址:https://github.com/liuhuanyong/ChineseHumorSentiment 项目介绍 幽默多指令人发笑的品质或者具有发笑的能力&…

账户Account类文件编写(static成员使用)

static类成员是该类所有成员共享一份的数据,一处修改了,全部变更; static成员函数只能调用static成员数据; static const整形int,char,可以在类内声明和初始化,类外不必再声明(跟编译…

百度机器阅读理解比赛赛后总结

百度机器阅读理解比赛赛后总结 <!-- 文章内容 --><div data-note-content"" class"show-content"><div class"show-content-free"><p>2018年4-5月间&#xff0c;笔者参加了百度举办的<a href"https://links.jia…

课程 | 《知识图谱》第二期重磅来袭!

参团&#xff0c;咨询&#xff0c;查看课程&#xff0c;请点击【阅读原文】↓↓

All in Linux:一个算法工程师的IDE断奶之路

一只小狐狸带你解锁 炼丹术&NLP 秘籍在合格的炼丹师面前&#xff0c;python可能被各种嫌弃前不久卖萌屋的lulu写了一篇vim的分享《算法工程师的效率神器——vim篇》&#xff0c;突然想起来自己也有一篇攒了几年灰的稿子&#xff0c;在小伙伴的怂恿下跟小夕强行翻新了一下&a…

2019 阿里Java 4轮面试题,含必考题答案参考!

Java一面 hashmap源码问题 HashMap底层结构 put操作讲一下 HashMap、HashMap如何保证线程安全、ConcurrentHashMap JVM有哪些回收算法&#xff0c;对应的收集器有哪些&#xff1f; jvm g1的内存模型讲一下&#xff0c;G1和CMS收集器的区别&#xff1f;以及G1收集器对CMS的改…

技术动态 | 自底向上构建知识图谱全过程

本文转载自公众号&#xff1a;阿里技术。“The world is not made of strings , but is made of things.”——辛格博士&#xff0c;from Google.知识图谱&#xff0c;是结构化的语义知识库&#xff0c;用于迅速描述物理世界中的概念及其相互关系&#xff0c;通过将数据粒度从d…

数据结构--单链表single linked list数据结构C++实现

2018年2月开始学习的 C Primer&#xff0c;到今天2019年3月已经整整一年了&#xff0c;非常感谢在一起交流的小伙伴&#xff0c;是你们的无私帮助和分享使得我能跨越很多技术的坑&#xff0c;感谢你们&#xff01;期待我们2019年一起拿下《数据结构与算法》以及Python入门。 …

搜索中的 Query 理解及应用

本文转载自公众号“夕小瑶的卖萌屋”&#xff0c;专业带逛互联网算法圈的神操作 -----》我是传送门 关注后&#xff0c;回复以下口令&#xff1a; 回复【789】 &#xff1a;领取深度学习全栈手册&#xff08;含NLP、CV海量综述、必刷论文解读&#xff09; 回复【入群】&#xf…

GAN原理,优缺点、应用总结

<h1 class"csdn_top" id"gan原理优缺点应用总结"><a name"t0"></a>GAN原理&#xff0c;优缺点、应用总结</h1> <br> 本文已投稿至微信公众号–机器学习算法全栈工程师&#xff0c;欢迎关注</article><p&…

java程序员进阶必读书单

以下是我推荐给Java开发者们的一些值得一看的好书&#xff0c;从java基础开始到高级&#xff0c;以及从高级进阶到架构等的书单。 基本都是经典之作&#xff0c;可以利用工作闲暇的时间&#xff0c;系统阅读。 本文作者&#xff0c;优知学院创始人 陈睿 优知学院是IT人在线进…

胡伟 | 面向多实体人机协作消解的对比表生成自动化方法

众包实体消解实体消解&#xff08;Entity Resolution&#xff0c;简称ER&#xff09;旨在发现不同知识图谱中指称真实世界相同对象的实体。众包实体消解&#xff08;Crowd ER&#xff09;在使用机器的基础上&#xff0c;还使用人来完成实体消解任务。众包实体消解的一个常见流程…

poj 1250 解题(链表法)

http://poj.org/problem?id1250 题意大意 住宿床位有限&#xff0c;按顺序入住&#xff0c;用ABC等代表单个人&#xff0c;第1次出现代表入住&#xff0c;第2次出现代表离开 输入&#xff1a; 1 ABCBCA 代表有1个床位&#xff0c; A入住&#xff0c; B入住&#xff0c;入住…

怎样高效阅读一份深度学习项目代码?

犹豫很久要不要把读代码这个事情专门挑出来写成一篇推文。毕竟读代码嘛&#xff0c;大家可能都会读。而且笔者个人读的和写的代码量也并不足以到指导大家读代码的程度。但笔者还是决定大胆地写一点&#xff1a;就当是给自己设立今后读代码的标准&#xff0c;也将一些之前未能践…

令人拍案叫绝的Wasserstein GAN

本文后续&#xff1a;Wasserstein GAN最新进展&#xff1a;从weight clipping到gradient penalty&#xff0c;更加先进的Lipschitz限制手法 在GAN的相关研究如火如荼甚至可以说是泛滥的今天&#xff0c;一篇新鲜出炉的arXiv论文《Wasserstein GAN》却在Reddit的Machine Learnin…

java架构师进阶之独孤九剑:数据结构以及书籍推荐

这是整个java架构师连载系列&#xff0c;分为9大步骤&#xff0c;我们现在还在第一个步骤&#xff1a;程序设计和开发->数据结构与算法。 “ 如果说 Java 是自动档轿车&#xff0c;C 就是手动档吉普。数据结构呢&#xff1f;是变速箱的工作原理&#xff0c; 你完全可以不…

中文文本蕴含计算项目(88万中文文本蕴含数据集+中文文本蕴含模型)

ChineseTextualInference ChineseTextualInference project including chinese corpus build and inferecence model, 中文文本推断项目,包括88万文本蕴含中文文本蕴含数据集的翻译与构建,基于深度学习的文本蕴含判定模型构建. 项目地址:https://github.com/liuhuanyong/Chine…

论文浅尝 | 打通推荐系统与知识图谱: 第一个公开的大规模链接数据集合

本文转载自&#xff1a;RUC智能情报站&#xff0c;知乎专栏链接&#xff1a;https://zhuanlan.zhihu.com/RucAIBox前言&#xff1a;近年来&#xff0c;知识图谱&#xff08;KB&#xff09;被广泛应用于推荐系统&#xff08;RS&#xff09;&#xff0c;但尚未有公开将推荐系统物…

数据结构--链表--判断一个字符串是否为回文串(单向链表,双向链表)

回文串为首尾对称的字符串&#xff1a; 如a&#xff0c;aba&#xff0c;abba等 单链表思路 1.将字符读入链表 2.找到链表中点 3.将链表从中点断开成2条&#xff0c;将后半条反转 4.比较两条链表是否相等&#xff08;比较次数以少的为准&#xff08;长度为奇数时&#xff…