1 小目标检测:
综述:
综述论文Augmentation for small object detection
深度学习笔记(十)Augmentation for small object detection(翻译)
吴建明wujianning:小目标检测的增强算法
机器之心:什么是小样本学习?这篇综述文章用166篇参考文献告诉你答案
2 目标检测
论文追踪:https://github.com/amusi/awesome-object-detection
综述文章:
1) Object Detection in 20 Years: A Survey
论文下载:https://arxiv.org/abs/1905.05055
论文阅读:论文笔记-2019-Object Detection in 20 Years: A Survey
2)A Survey of Deep Learning-based Object Detection
论文下载:https://arxiv.org/abs/1907.09408
论文阅读:墨仆:读 A Survey of Deep Learning-based Object Detection
3)Recent Advances in Deep Learning for Object Detection
论文下载:https://arxiv.org/abs/1908.03673
论文阅读:一个啥都不会的程序猿:目标检测综述-Deep Learning for Object Detection(一)
4)Deep Learning for Generic Object Detection: A Survey
论文下载:Deep Learning for Generic Object Detection: A Survey
论文阅读:Deep Learning for Generic Object Detection: A Survey -- 目标检测综述总结
跑者小越:私藏多年的目标检测好文分享 (不收藏血亏)
3 数据增强
chaser:A survey on Image Data Augmentation 数据增强文献综述CrazyVertigo:数据增强方法CrazyVertigo:GridMask Data Augmentationhttps://github.com/CrazyVertigo/awesome-data-augmentationTom Hardy:汇总|目标检测中的数据增强、backbone、head、neck、损失函数4 卷积神经网络
1)
论文地址:https://arxiv.org/abs/1803.08834
94页论文综述卷积神经网络:从基础技术到研究前景
2)A Survey of the Recent Architectures of Deep Convolutional Neural Networks
论文阅读:Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks--2019
论文下载:A Survey of the Recent Architectures of Deep Convolutional Neural Networks
5 类别不均衡
ChenJoya:Imbalance Problems in Object Detection: A Review
https://github.com/kemaloksuz/ObjectDetectionImbalance
鑫鑫淼淼焱焱:类别不平衡学习资源推荐
ZhiningLiu1998/awesome-imbalanced-learning
6 关于深度学习优化方法
1)https://mp.weixin.qq.com/s/hbJjWah8pzT3PskwqTCUkQ
2)链接:https://pan.baidu.com/s/1DCQYTfG5deU4zTIrJcuLSQ 密码:x22d
7 NMS
Adaptive NMS: Refining Pedestrian Detection in a Crowd
论文阅读:论文阅读2(CVPR2019):Adaptive NMS:Refining Pedestrian Detection in a Crowd
论文下载:Adaptive NMS: Refining Pedestrian Detection in a Crowd
8 模型训练
1) Bag of Freebies for Training Object Detection Neural Networks
论文下载:Bag of Freebies for Training Object Detection Neural Networks
论文阅读:
李沐等将目标检测绝对精度提升 5%,不牺牲推理速度9 目标检测中attention
1)Relation Networks for Object Detection
论文阅读:Relation Networks for Object Detection算法笔记
论文下载;Relation Networks for Object Detection
10)IoU
CrazyVertigo:目标检测回归损失函数简介:SmoothL1/IoU/GIoU/DIoU/CIoU Loss11)模型加速
CrazyVertigo:【模型压缩和加速】inception/mobilenet/squeezenet/shuffle简枫:一文看懂深度学习模型压缩和加速12)实验效率及可视化
LiuFG:提高DL实验效率神器初体验-fitlog/nni/determind13)小目标学习
14)目标检测tricks
https://zhuanlan.zhihu.com/p/141878389
初识CV:目标检测比赛中的tricks(已更新更多代码解析)roger:目标检测中的Tricks未完待续!!!