5.4 汇编语言:算数运算指令集

算术运算指令集是计算机中的一组基本操作,用于对数字执行常见的算术运算操作。这些指令都是计算机中非常基础的运算指令,可以用于实现所有常见的算术运算操作,并可以通过组合使用实现更加复杂的数学运算。在实际编程中,程序员可以根据具体需求选择合适的运算指令,实现程序中的算术运算操作。

4.1 MOV/INC/DEC/XCHG

MOV/INC/DEC 指令是汇编语言中的三种基本指令,用于在寄存器和内存中进行数据传输和操作。通过这些基本的指令,我们可以完成许多基础的汇编操作,并通过组合使用这些指令,实现更加复杂的功能。

  • MOV指令:MOV指令用于将数据从一个位置复制到另一个位置
  • INC指令:INC指令用于将一个寄存器或内存单元中的值加1
  • DEC指令:DEC指令用于将一个寄存器或内存单元中的值减1
  • XCHG指令:XCHG指令用于将一个寄存器与另一个寄存器之间进行数据交换

MOV指令: 该指令从源操作数向目标操作数之间复制数据,两个操作数必须尺寸一致,目的操作数不能是CS/EIP/IP等.

00A41000 | B8 24100000        | mov eax,1024                        | EAX = 1024
00A41005 | 8BD8               | mov ebx,eax                         | EBX = 1024
00A41007 | 66:B9 0010         | mov cx,1000                         | CX = 1000

MOVZX指令: 零扩展传送,该指令将源操作数的内容复制到目标操作数中,并将该值零扩展(zero-extend)至16位或者32位,该指令适用于无符号整数,其基本格式如下:

01301000 | 66:BB 9BA6         | mov bx,A69B                         | BX = 0A69B
01301004 | 0FB7C3             | movzx eax,bx                        | EAX = 0000A69B
01301007 | 0FB6D3             | movzx edx,bl                        | EDX = 0000009B
0130100A | 66:0FB6CB          | movzx cx,bl                         | CX = 009B

MOVSX指令: 符号扩展传送,该指令将源操作数的内容复制到目标操作数中,并将该值符号扩展(sign-extend)至16位或者是32位,该指令只能用于有符号整数,其基本格式如下:

00FD1000 | 66:BB 9BA6         | mov bx,A69B                         | BX = 0A69B
00FD1004 | 0FBFC3             | movsx eax,bx                        | EAX = FFFFA69B
00FD1007 | 0FBED3             | movsx edx,bl                        | EDX = FFFFFF0B
00FD100A | 66:0FBECB          | movsx cx,bl                         | CX = FF9B

XCHG指令: 数据交换指令,该指令用于交换两个操作数中的内容,但该指令不接受立即数操作数.

00D71000 | B8 00100000        | mov eax,1000                        | EAX = 1000h
00D71005 | BB 00200000        | mov ebx,2000                        | EBX = 2000h
00D7100A | 93                 | xchg ebx,eax                        | EAX = 2000h;EBX = 1000h

INC/DEC指令: 数据递增与递减,INC指令用于对寄存器或内存数据的递增,DEC指令用于对寄存器或内存数据递减.

00881000 | B8 00100000        | mov eax,1000                        | EAX = 1000h
00881005 | 40                 | inc eax                             | EAX = 1001h
00881006 | 40                 | inc eax                             | EAX = 1002h
00881007 | BB 00200000        | mov ebx,2000                        | EBX = 2000h
0088100C | 4B                 | dec ebx                             | EBX = 1FFFF
0088100D | 4B                 | dec ebx                             | EBX = 1FFFE
0088100E | 4B                 | dec ebx                             | EBX = 1FFFD

4.2 ADD/SUB

ADD和SUB是计算机汇编语言中的算术运算指令,分别用于实现加法运算和减法运算。ADD指令用于将两个操作数相加,并将结果存放到目的操作数中;SUB指令用于将两个操作数相减,并将结果存放到目的操作数中。目的操作数可以是寄存器或存储器单元,而源操作数可以是立即数、寄存器或存储器单元。

使用ADD和SUB指令,我们可以在寄存器和存储器中进行简单的加减法运算,实现各种基础的运算操作。这些指令是汇编语言编程中非常基础的操作,程序员可以通过组合使用这些指令,实现更加复杂的算术运算操作。

将将同尺寸的源操作数和目的操作数相加,且不改变原操作数,相加后的结果存入目的操作数中.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataMyList DWORD 10h,20h,30h,40h.codemain PROC; 将eax于ebx 两数相加: 将相加后的结果放入eaxmov eax,1024mov ebx,2048add eax,ebx; 同样两数相减,将结果放到eax中mov eax,1024sub eax,512; 针对数组的相加同样可以mov esi,offset MyList    ; 获取到首地址mov eax,0mov ebx,0mov eax,dword ptr ds:[esi]            ; 找到第一个元素mov ebx,dword ptr ds:[esi + 1 * 4]    ; 找到第二个元素add eax,ebx                           ; 相加操作invoke ExitProcess,0main ENDP
END main

4.3 NEG/NOT

NEG和NOT指令是计算机汇编语言中的逻辑运算指令,分别用于对操作数进行取反和按位取反操作。NEG指令可以将一个操作数的值取反(即变为相反数),NOT指令可以将一个操作数的二进位取反(0变为1,1变为0)。

这些指令能够增强程序的处理能力和灵活性,可以完成各种逻辑运算,包括对数值和位运算的计算。在一些特定的场景中,NEG和NOT指令非常有用。

该指令通过将数字转换为对应的补码而求出其值的相反数,结合上面的加法与减法案例,我们来模拟编译器处理特定语句的写法Rval = -Xvar + (Yvar - Zvar),而使用NOT指令则是对二进制位取反.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval SDWORD ?Xval SDWORD 26Yval SDWORD 30Zval SDWORD 40
.codemain PROC; 写出: Rval = -Xvar + (Yvar - Zvar) 汇编格式; 首先将Xval的值通过neg取反mov eax,dword ptr ds:[Xval]neg eax; 然后将Yval与Zval相减后复制到Yvalmov ebx,dword ptr ds:[Yval]sub ebx,dword ptr ds:[Zval];最后将两个子项相加后放入到Rval中add eax,ebxmov dword ptr ds:[Rval],eax; 2.写出: Rval = (Xval+Yval) - (Yval+Zval)mov eax,dword ptr ds:[Xval]add eax,dword ptr ds:[Yval]mov dword ptr ds:[Rval],eaxmov ebx,dword ptr ds:[Yval]add ebx,dword ptr ds:[Zval]sub dword ptr ds:[Rval],ebx; not 二进制取反xor eax,eaxmov al,11110000bnot al              ; al = 00001111binvoke ExitProcess,0main ENDP
END main

4.4 AND/OR/XOR

AND、OR、和XOR指令是计算机汇编语言中的布尔运算指令,用于对二进制数进行逻辑运算。AND指令可以将两个操作数的二进制数分别按位进行“与”(and)操作,OR指令可以将两个操作数的二进制数分别按位进行“或”(or)操作,XOR指令可以将两个操作数的二进制数分别按位进行“异或”(xor)操作。使用这些指令,我们可以在汇编语言程序中进行各种布尔运算,实现各种逻辑控制和计算。

这些指令可以操作的目的操作数包括寄存器和存储器单元,而源操作数可以是立即数、寄存器或存储器单元。这些指令也是汇编语言编程中非常基础和常用的操作。

AND指令是对数据进行与运算,OR指令则是对数据进行或运算,XOR则是异或,这三个指令都是将操作值保存在目的操作数中,需要注意的是这些运算符都是针对二进制数进行操作的.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataString BYTE "hello LYSHARK",0dh,0h.codeToString procmov ecx,lengthof Stringmov esi,offset Strings:  ;and byte ptr [esi],11011111b  ; 清除第五位,小写变大写or byte ptr [esi],00100000b    ; 设置第五位,大写变小写inc esiloop sretToString endpmain PROC; and 逻辑与运算xor eax,eaxmov al,00111011band al,00001111b  ; 运算后去除al中的0mov eax,00401024hand eax,0ffh         ; eax = 00000024hmov eax,00401024hand eax,0ffffh       ; eax = 00001024hmov eax,00401024hand eax,0ffff0000h   ; eax = 00400000h; or 逻辑或运算xor edx,edxmov dl,5              ; 二进制值or dl,30h             ; 转为有ASCII码; xor 异或运算mov eax,0ffhxor eax,0ffh          ; eax = 0mov eax,4xor eax,5             ; eax = 1mov eax,0401000hxor eax,0400000h      ; eax = 00001000hmov eax,0401000hxor eax,01000h        ; eax = 00400000h; 异或可用于检查标志位xor eax,eaxmov eax,00001111hxor eax,0          ; 检查基偶标志mov eax,00100101hxor eax,0          ; 影响PF标志call ToStringinvoke ExitProcess,0main ENDP
END main

4.5 SHL/SHR

SHL/SHR指令是计算机汇编语言中的逻辑移位指令,用于对二进制数字节或字进行逻辑位移操作。其中,SHL(shift left)指令用于将操作数左移指定的位数,而SHR(shift right)指令则用于将操作数右移指定的位数。这些指令可以用于实现各种算法和数据处理操作。

SHL常用于对目标操作数执行逻辑左移(无符号数)操作,其左移后最低位以0填充,而移动出去的最高位则会送入CF(进位标志)中,而SHR则相反,对目标操作数执行逻辑右移(无符号数)操作,移出的数据位用0代替,最低位被复制到CF(进位标志)中,原来的进位标志位丢失.

Intel处理器中定义,执行移位的源操作数的范围必须在0-255之间,在任何处理器上都可以使用CL寄存器存放移位位数,例如在下面的指令中,AL寄存器被左移一位,最高位被复制到了进位标志中,最低位被清零:

01251006 | B3 8F                | mov al,10001111b                            | AL = 10001111b
01251008 | D0E3                 | shl al,1                                    | CF = 1,AL = 00011110b01251006 | B0 01                | mov al,10000000b                            | AL = 10000000b
01251008 | C0E0 02              | shl al,2                                    | CF = 0,AL = 00000000b01251006 | B0 01                | mov al,10000000b                            | AL = 10000000b
01251008 | C0E0 01              | shl al,1                                    | CF = 1,AL = 00000000b01251006 | B0 01                | mov al,10100000b                            | AL = 10100000b
01251008 | C0E0 03              | shl al,2                                    | CF = 0,AL = 10000000b

另外使用SHL指令还可以进行2的次幂的高速乘法运算,任何操作数左移动N位,就相当于该操作数乘以2的N次方,如下例子:

01311002 | B0 05                | mov al,5                                    | AL 左移动1位
01311004 | D0E0                 | shl al,1                                    | al * 2 = 1001311007 | B0 05                | mov al,5                                    | AL左移2位
01311009 | C0E0 02              | shl al,2                                    | al * 4 = 2001311007 | B0 05                | mov al,5                                    | AL左移3位
01311009 | C0E0 03              | shl al,3                                    | al * 8 = 40

下面是一个左移计算的案例,我们通过汇编来计算Rval = ((Xval + Yval) - (Yval + Zval)) * 8的结果.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval SDWORD ?Xval SDWORD 50Yval SDWORD 100Zval SDWORD 10
.codemain PROC; Rval = ((Xval + Yval) - (Yval + Zval)) * 8mov eax,dword ptr ds:[Xval]add eax,dword ptr ds:[Yval]mov ebx,dword ptr ds:[Yval]add ebx,dword ptr ds:[Zval]sub eax,ebx; 乘以8也就是左移3位 1=>2 2=>4 3=>8 4=>16 5=>32 6=>64 7=>128shl eax,3mov dword ptr ds:[Rval],eaxinvoke ExitProcess,0main ENDP
END main

对目标操作数执行SHR逻辑右移(无符号数)操作,移出的数据位用0代替,最低位被复制到CF进位标志中,原来的进位标志位丢失.

0131100D | B0 01                | mov al,10001111b                            | AL = 10001111b
0131100F | D0E8                 | shr al,1                                    | CF = 1,AL = 01000111b0131100D | B0 01                | mov al,10001111b                            | AL = 10001111b
0131100F | D0E8                 | shr al,2                                    | CF = 1,AL = 00100011b

另外任何无符号操作数逻辑右移N位,就相当于该操作数除以2的N次方,如下例子:

01311012 | B2 20                | mov dl,20                                   | DL 右移1位 
01311014 | D0EA                 | shr dl,1                                    | dl/2 = 1001311012 | B2 20                | mov dl,20                                   | DL 右移2位 
01311014 | D0EA                 | shr dl,2                                    | dl/4 = 5

使用乘法运算的效率是非常低的,通过右移操作可以显著提高程序的计算乘法的效率,在乘数是2的次幂的情况下才可以使用,如果不是则需要拆分后继续计算,我们先来通过汇编来计算Rval = (Xval / 8) + (Yval * 16) - (Zval * 4)的结果.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval SDWORD ?Xval SDWORD 200Yval SDWORD 50Zval SDWORD 10
.codemain PROC; Rval = (Xval / 8) + (Yval * 16) - (Zval * 4); 次方表: 1=>2 2=>4 3=>8 4=>16 5=>32 6=>64 7=>128; 次方表: 8=>256 9=>512 10=>1024 11=>2048 12=>4096 13=>8192 14=>16384; 先通过右移3位,计算除法mov eax,dword ptr ds:[Xval]   ; Xval / 8shr eax,3; 再通过左移4位和2位分别计算乘法mov ebx,dword ptr ds:[Yval]   ; Yval * 16shl ebx,4mov ecx,dword ptr ds:[Zval]   ; Zval * 4shl ecx,2add eax,ebxsub eax,ecxmov dword ptr ds:[Rval],eaxinvoke ExitProcess,0main ENDP
END main

上面的这种计算方式属于乘数刚好是2的次幂,如果不是2的次幂则需要拆分后计算,如下案例,为了计算无符号乘以36,可以把36分解成2的5次方和2的2次方,然后利用移位命令高效计算.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval SDWORD ?
.codemain PROC; 次方表: 1=>2 2=>4 3=>8 4=>16 5=>32 6=>64 7=>128; 次方表: 8=>256 9=>512 10=>1024 11=>2048 12=>4096 13=>8192 14=>16384; 计算 123 * 36; 等式拆分 EAX * 36 => EAX * (32 + 4) => (EAX * 32) + (EAX * 4)mov eax,123mov ebx,eax         ; 拷贝出一份shl eax,5           ; 计算 (EAX * 32)shl ebx,2           ; 计算 (EAX * 4)add eax,ebx         ; 最后相加mov dword ptr ds:[Rval],eax; 计算 123 * 24; 等式拆分: EAX * 24 => EAX * (16 + 8) => (EAX * 16) + (EAX * 8)mov eax,123mov ebx,eaxshl eax,4           ; 计算 (EAX * 16)shl ebx,3           ; 计算 (EAX * 8)add eax,ebxmov dword ptr ds:[Rval],eax; 计算 123 * 21; 等式拆分: EAX * 21 => EAX * (16 + 4 + 1) => (EAX * 16) + (EAX * 4) + (EAX * 1)mov eax,123mov ebx,eaxmov ecx,eax         ; 得到 (EAX * 1)shl eax,4           ; 计算 (EAX * 16)shl ebx,2           ; 计算 (EAX * 4)add eax,ebxadd eax,ecxmov dword ptr ds:[Rval],eaxinvoke ExitProcess,0main ENDP
END main

下面是我通过寻找一些规律,能够在不查表的情况下逆推出其左移或者是右移中乘数或除数的具体值,如果比较复杂的话还是直接查表来的容易一些,此处只是一种思考方式.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval DWORD ?
.codemain PROC; 次方表: 1=>2 2=>4 3=>8 4=>16 5=>32 6=>64 7=>128; 次方表: 8=>256 9=>512 10=>1024 11=>2048 12=>4096 13=>8192 14=>16384; 乘法逆推: 28/7=4mov eax,7                      ; eax=7shl eax,2                      ; 求0x2是乘以几,乘以4mov dword ptr ds:[Rval],eax    ;  eax = 28 计算出: 0x2 => 28/7=4; 乘法逆推: 96/6 = 16 => 4*4=16mov eax,6                      ; eax = 6shl eax,2                      ; 4shl eax,2                      ; 4mov dword ptr ds:[Rval],eax    ; eax = 96; 乘法逆推: 4*4*8mov eax,4                      ; eax = 4shl eax,2                      ; 运行到此处 eax=16 通过16/4 = 4 故乘以4shl eax,3                      ; 运行到此处 eax  =128  通过 128/4=32 , 32/4=8 故乘以8mov dword ptr ds:[Rval],eax; 除法逆推: 7/1.75 = 4mov eax,7                      ; eax = 7shr eax,2                      ; 此处乘以4mov dword ptr ds:[Rval],eax    ; eax = 1.75 => 7/1.75=4invoke ExitProcess,0main ENDP
END main

4.6 SAL/SAR

SAL和SAR指令是计算机汇编语言中的算数移位指令,它们和逻辑移位指令相似,都是对二进制数字节或字进行位移操作。但是SAL和SAR指令可以用于进行带符号的算术操作,实现各种算法和数据处理操作。通过使用SAL和SAR指令,我们可以在汇编语言程序中对带符号的二进制数字节或字进行算术位移操作,实现各种算法和数据处理操作。需要注意的是,在算术位移操作中,符号位需要保持不变。这些指令也是汇编语言编程中非常基础和常用的操作。

SAL指令与SHL指令等价,SAR指令可以对有符号数进行快速除以2的次幂操作,也可以将一个AX寄存器中的值进行扩展,扩展成EAX.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.codemain PROC; SAR => 算数右移mov al,0f0h         ; AL = 11110000b (-16)sar al,1            ; AL = 11111000b (-8); SAR => 有符号除法 计算-128的,2的3次方; 2次方 => -32 3次方 => -16 4次方 => -8 5次方 => -4mov eax,-128        ; AL = 10000000bsar eax,3           ; AL = 11110000b EAX = -16; SAR => 符号扩展AX扩展到EAX; 先左移EAX 16位,然后算术右移EAX 16位mov ax,-128         ; EAX = ????FF80hshl eax,16          ; EAX = FF800000hsar eax,16          ; EAX = FFFFFF80hinvoke ExitProcess,0main ENDP
END main

4.7 ROL/ROR

ROL/ROR指令是计算机汇编语言中的循环移位指令,它们可以将某个二进制数字进行指定位数的移位,并将移出的位重新放置到高位或低位。ROL指令向左循环移位,ROR指令向右循环移位。通过使用ROL和ROR指令,我们可以在汇编语言程序中进行位运算操作,实现各种算法和数据处理操作。这些指令也是汇编语言编程中非常常用的指令。

ROL位循环左移,其左移1位后会把最高位同时复制到进位标志位和最低位中,而ROR则是循环右移,其右移1位后,把最低位同时复制到进位标志位和最高位中.

循环移位和普通移位不同之处在于前者并不会丢失任何数据位,从一端走的数据位会从另一端出现,如循环左移会将高位复制到低位中,循环右移则将低位复制到高位中,但需要注意不论是左移/右移,都是对二进制格式进行操作的.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.codemain PROC; ROL => 循环左移mov al,40h        ; AL = 01000000brol al,1          ; AL = 10000000b , CF = 0rol al,1          ; AL = 00000001b , CF = 1rol al,1          ; AL = 00000010b , CF = 0mov al,00100000brol al,3          ; AL = 00000001b , CF = 1; ROR => 循环右移mov al,01h        ; AL = 00000001bror al,1          ; AL = 10000000b , CF = 1ror al,1          ; AL = 01000000b , CF = 0mov al,00000100bror al,3          ; AL = 10000000b , CF = 1; ROL => 循环左移,交换位组; 交换 高半部分(位4-7) 低半部分(位0-3)mov al,26hrol al,4          ; rol 与 ror 结果一致ror al,4invoke ExitProcess,0main ENDP
END main

4.8 RCL/RCR

RCL/RCR指令是计算机汇编语言中的标志位移位指令,它们可以将某个二进制数字进行指定位数的移位,同时会将操作数的最高位和进位标志位呈现为下一轮移位的输入。RCL指令向左移位,RCR指令向右移位。通过使用RCL和RCR指令,我们可以在汇编语言程序中进行标志位运算操作,实现各种算法和数据处理操作。这些指令也是汇编语言编程中非常常用的指令。

RCL指令在每位左移1位后,把CF进位标志复制到最低有效位中,最高有效位复制到进位标志中,RCR则相反,右移后把CF进位标志复制到最高有效位中,并把最低有效位复制到进位标志中.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.codemain PROC; RCL 左移clc            ; 将CF进位标志置0mov bl,88h     ; CF = 0 , BL = 10001000brcl bl,1       ; CF = 1 , BL = 00010000brcl bl,1       ; CF = 0 , BL = 00100001b; RCR 右移stc            ; 将CF进位标志置1mov ah,10h     ; CF = 1 , ah = 00010000hrcr ah,1       ; CF = 1 , ah = 10001000hinvoke ExitProcess,0main ENDP
END main

有时候我们需要让一个数组中的元素整体进行左移或者右移操作,当然可以循环,此处我们通过直接寻址来实现.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval SDWORD ?ArraySize = 3Array DWORD ArraySize DUP(99999999h)ByteArray BYTE 81h,20h,33hWordArray WORD 810dh,0c064h,93abh
.codemain PROC; 多双字同时右移mov esi,0shr Array[esi + 8],1     ; 高双字rcr Array[esi + 4],1     ; 中间双字rcr Array[esi],1         ; 低双字; 多双字同时左移mov esi,0shl Array[esi+8],1rcl Array[esi+4],1rcl Array[esi],1; 让数组整体右移 (从高字节到低字节)shr [ByteArray + 2],1rcr [ByteArray + 1],1rcr [ByteArray],1; 让数组整体左移 (从低字节到高字节)shl [ByteArray],1rcl [ByteArray + 2],1rcl [ByteArray + 4],1invoke ExitProcess,0main ENDP
END main

4.9 MUL/IMUL

MUL指令和IMUL指令是计算机汇编语言中用于进行乘法运算的指令,它们可以将两个操作数相乘,获取最终的计算结果。通过使用MUL和IMUL指令,我们可以在汇编语言程序中进行乘法运算操作,实现各种算法和数据处理操作。需要注意的是,MUL指令和IMUL指令都会改变标志寄存器中的CF和OF标志位,因此在使用这些指令时要注意处理这些标志位。

MUL/IMUL分别可进行有符号与无符号的乘法运算,通常该指令都接受寄存器操作数,也接受内存操作数,但是不接受立即数,且乘数与被乘数大小必须相同,乘基尺寸是乘数/被乘数的两倍.

MUL乘法指令有三种格式:

  • 第一种将8位操作数与AL相乘,结果放入AX中
  • 第二种将16位操作数与AX相乘,结果的高16位放入DX低16位放入AX
  • 第三种将32位操作数与EAX相乘,结果高32位放入EDX第32位放入EAX中.
  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval DWORD ?VarWordA WORD 2000hVarWordB WORD 0100h
.codemain PROC; 执行8位乘法运算 al = al*blmov al,5hmov bl,10hmul blmov byte ptr ds:[Rval],al; 执行16位乘法运算xor eax,eaxxor edx,edxmov ax,word ptr ds:[VarWordA]mul word ptr ds:[VarWordB]mov word ptr ds:[Rval],ax     ; 低半部分mov word ptr ds:[Rval],dx     ; 高半部分  DX:AX = 00000020h; 执行32位乘法运算xor eax,eaxxor edx,edxmov eax,12345hmov ebx,1000hmul ebxmov dword ptr ds:[Rval],eax   ; 低半部分mov dword ptr ds:[Rval],edx   ; 高半部分 EDX:EAX = 0000000012345000hinvoke ExitProcess,0main ENDP
END main

IMUL指令主要用于执行有符号整数的乘法运算,并保留乘积的符号位,且在32位汇编中有三种格式:但操作数格式,双操作数格式,三操作数格式,首先是单操作数模式,该模式把乘积存储在累加器AX中,或者将符号位放入EDX将结果放入EAX中.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataEDX_Rval DWORD ?EAX_Rval DWORD ?
.codemain PROC; 执行8位乘法运算: 48*8 得到的积+192 溢出xor eax,eaxmov al,48mov bl,4imul bl          ; CF 进位 = 1 OF 溢出 = 1xor eax,eaxmov al,-4mov bl,4imul bl           ; AX=FFF0h OF=0; 执行16位乘法运算: 48*4 得到的积 +192xor eax,eaxmov ax,48mov bx,4imul bxmov word ptr ds:[EDX_Rval],dxmov word ptr ds:[EAX_Rval],ax  ; DX:AX = 000000C0h OF=0; 执行32位乘法运算: +4823424 *(-423)xor eax,eaxxor ebx,ebxmov eax,+4823424mov ebx,-423imul ebxmov dword ptr ds:[EDX_Rval],edx   ; EDX为符号位mov dword ptr ds:[EAX_Rval],eax   ; EDX:EAX = FFFFFFFF86635D80h OF=0invoke ExitProcess,0main ENDP
END main

接着就是乘法语句的双操作数与三操作数模式了,在双操作数中第一个操作数必须是寄存器,第二个操作数可以是寄存器或内存等,在三操作数模式中,把乘积存储在第一个操作数中,其他与双操作数类似.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.datawordp   SWORD 4dwordp  SDWORD 4Rval DWORD ?
.codemain PROC; 双操作数乘法运算xor eax,eaxxor ebx,ebxmov ax,-16                   ; ax = -16mov bx,2                     ; bx = 2imul bx,ax                   ; bx = bx * aximul bx,2                    ; bx = bx * 2imul bx,word ptr ds:[wordp]  ; bx = bx * wordpmov word ptr ds:[Rval],bx    ; 放入变量中保存; 三操作数乘法运算xor eax,eaxxor ebx,ebximul bx,wordp,-16           ; bx = wordp * -16imul ebx,dwordp,-16         ; ebx = dwordp * -16imul ebx,dwordp,-20         ; ebx = dwordp * -20mov dword ptr ds:[Rval],ebx ; 放入变量中invoke ExitProcess,0main ENDP
END main

到此为止我们学会了通过移位的方式实现快速乘法运算,也学过使用MUL指令进行乘法计算,接下来我们可以编写两个案例分别通过移位和MUL计算EAX与36相乘的结果,看看哪一个效率更高一些.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.codeshl_proc procmov ecx,10s:push eaxmov ebx,eaxshl eax,5shl eax,2add eax,ebxpop eaxloop sretshl_proc endpmul_proc procmov ecx,10s:push eaxmov ebx,36mul ebxpop eaxloop sretmul_proc endpmain PROCmov eax,10call shl_procmov eax,10call mul_procinvoke ExitProcess,0main ENDP
END main

4.10 DIV/IDIV

DIV指令和IDIV指令是计算机汇编语言中用于进行除法运算的指令,DIV用于无符号整数的除法运算,IDIV用于带符号整数的除法运算。这两条指令均使用32位被除数,得到32位的商和余数。如果被除数是16位的,则由DX:AX提供了32位的被除数。或者如果被除数是8位的,则AL提供了8位的被除数。通过使用DIV和IDIV指令,我们可以在汇编语言程序中进行除法运算操作,实现各种算法和数据处理操作。

DIV是无符号除法指令,该指令支持8/16/32位无符号整数的除法运算,指令中唯的寄存器或内存操作数是除数,IDIV则是有符号除法指令,该指令与无符号除法几乎一致,唯一的不同在于有符号除法在进行相除操作时需要符号扩展.

首先我们先来学习一下DIV无符号除法运算的使用技巧,分别演示8/16/32位无符号除法的使用方式.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval DWORD ?DivIdend QWORD 0000000800300020hDivIsor DWORD 00000100hDiv_Eax DWORD ?Div_Edx DWORD ?
.codemain PROC; 执行8位除法: 83/2 商al是41h 余数ah是1xor eax,eaxmov ax,0083h                  ; 被除数mov bl,2                      ; 除数div bl                        ; ax = ax / blmov byte ptr ds:[Rval],ah     ; ah = 01hmov byte ptr ds:[Rval],al     ; al = 41h; 执行16位除法: 8003h/100h 商是80h 余数是3xor edx,edx                   ; 清除edx寄存器mov ax,8003h                  ; 被除数mov cx,100h                   ; 除数div cx                        ; ax = ax / cxmov word ptr ds:[Rval],ax     ; ax = 0080hmov word ptr ds:[Rval],dx     ; dx = 0003h; 执行32位除法mov edx,dword ptr DivIdend + 4  ; 高双字mov eax,dword ptr DivIdend      ; 低双字div DivIsor                     ; 与被除数相除mov dword ptr ds:[Div_Eax],eax  ; eax = 08003000hmov dword ptr ds:[Div_Edx],edx  ; edx = 00000020hinvoke ExitProcess,0main ENDP
END main

针对IDIV有符号数的除法运算,需要对被除数进行除法操作之前,对其进行符号扩展,汇编中有三条扩展命令.

  • CBW指令:将字节符号扩展至字,扩展AL的符号位至AH中,保留了数字的符号.
  • CWD指令:将字符号扩展至双字,指令扩展AX的符号位至DX中.
  • CDQ指令:双字符号扩展至八字节,指令扩展EAX的符号位至EDX中.

当使用符号扩展指令扩展后,寄存器就可以被用来计算有符号除法了,代码如下所示:

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataByteVal SBYTE -48WordVal SWORD -5000DworeVal SDWORD +50000Rval DWORD ?
.codemain PROC; 字节扩展至字 -48/5xor eax,eaxmov al,byte ptr ds:[ByteVal]  ; al = D0 取出 -48cbw                           ; ax = FFD0 将al扩展至axmov bl,5                      ; bl = 05idiv bl                       ; ax=ax/blmov word ptr ds:[Rval],ax     ; 结果: ax = FDF7mov byte ptr ds:[Rval],al     ; AL保存商 -9mov byte ptr ds:[Rval],ah     ; AH保存余数 -3; 字扩展至双字xor eax,eaxmov ax,word ptr ds:[WordVal]  ; 除数cwd                           ; 扩展至双字(扩展AX至DX)mov bx,+256                   ; 被除数idiv bx                       ; ax = ax/bxmov word ptr ds:[Rval],ax     ; 商AX=-19mov word ptr ds:[Rval],dx     ; 余数DX=-136; 双字符号扩展至八字节mov eax,dword ptr ds:[DworeVal]cdq                             ; 扩展EAX到EDXmov ebx,-256idiv ebxmov dword ptr ds:[Rval],eax     ; 商 EAX = -195mov dword ptr ds:[Rval],edx     ; 余数 EDX = +80invoke ExitProcess,0main ENDP
END main

学习了前面的这几种计算方式以后,我们就可以将其总结起来实现计算复杂的表达式了,先来三个练手的.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval DWORD ?var1 DWORD 10var2 DWORD 15var3 DWORD 20var4 DWORD 25
.codemain PROC; 实现计算: var4 = (var1 * 5) / (var2 - 3)mov eax,dword ptr ds:[var1] ; 先计算左边 (var1 * 5)mov ebx,5mul dword ptr ds:[ebx]      ; EDX:EAX 乘积mov ebx,dword ptr ds:[var2] ; 计算右边 (var2 - 3)sub ebx,3div dword ptr ds:[ebx]       ; 计算两者的除法mov dword ptr ds:[var4],eax  ; 最后赋值操作; 实现计算: var4 = (var1+var2) * var3mov eax,dword ptr ds:[var1]add eax,dword ptr ds:[var2]   ; 计算前半部分mov ebx,dword ptr ds:[var3]   ; 计算后半部分mul ebxmov dword ptr ds:[var4],eax   ; 最后赋值操作; 实现计算: var1 = (var2/var3) * (var1+var2)mov eax,var2cdq                           ; 扩展为EDX:EAXidiv dword ptr ds:[var3]      ; 计算除法,存入eaxmov ebx,dword ptr ds:[var1]   ; 计算加法add ebx,dword ptr ds:[var2]imul dword ptr ds:[ebx]       ; 最后计算乘法mov dword ptr ds:[var1],eax   ; 在eax中取值invoke ExitProcess,0main ENDP
END main

最后我们来实现一个相对复杂的案例,总体的复习一下,该案例计算var4 = (var1 * -5) / (-var2 % var3)返回值,我们可以从右边开始计算,并把右边的值存储到EBX中,然后把被除数符号扩展到EDX,最后使用IDIV计算除法.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval DWORD ?var1 DWORD 54var2 DWORD 56var3 DWORD 5var4 DWORD 52
.codemain PROC; 实现计算: var4 = (var1 * -5) / (-var2 % var3)mov eax,dword ptr ds:[var2]neg eax                      ; 将var2反转cdq                          ; 将被除数符号扩展idiv var3                    ; 除以var3 则 EDX=余数mov ebx,edx                  ; 将余数给EBXmov eax,-5imul var1                    ; 计算 var1 * -5 结果给EAXidiv ebx                     ; eax = eax/ebxmov dword ptr ds:[var4],eax  ; 最后将结果给var4invoke ExitProcess,0main ENDP
END main

4.11 ADC/SBB

ADC和SBB是计算机汇编语言中的指令,用于完成带进位的扩展加法和扩展减法。通过使用ADC和SBB指令,我们可以在汇编语言程序中进行带进位的扩展加法和扩展减法的操作,实现各种算法和数据处理操作。需要注意的是,在使用这些指令时需要妥善地处理进位标志位和借位标志位的值,以确保计算结果的正确性。

扩展加减法是指任意尺寸大小数字的加减法,其中ADC指令主要用户实现带进位加法,SBB指令则实现带进位减法,起作用都是将源操作数与目的操作数以及进位等相加减.

以扩展加法为例,计算两个8位整数相加(FFh+FFh)产生的16位结果将被存放在DL:AL (01feh)中,如果是计算两个32位整数相加(FFFFFFFFh+FFFFFFFFh),则会在EDX和EAX中分别存放00000001h:FFFFFFFEh这两个值,扩展SBB同理.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include kernel32.inc
includelib kernel32.lib.dataRval DWORD ?
.codemain PROC; 计算8位加法操作xor edx,edxxor eax,eaxmov al,0ffh                   ; 设置加数add al,0ffh                   ; al = al + 0ffhadc dl,0                      ; 进位加法mov byte ptr ds:[Rval],dl     ; 存放高位mov byte ptr ds:[Rval],al     ; 存放低位; 计算32位加法操作xor edx,edxxor eax,eaxmov eax,0ffffffffhadd eax,0ffffffffhadc edx,0                      ; 带进位加法mov dword ptr ds:[Rval],edx    ; 存放高位mov dword ptr ds:[Rval],eax    ; 存放低位; 计算32位减法操作xor edx,edxxor eax,eax;mov edx,1                     ; 设置高半部分mov eax,0                      ; 设置低半部分sub eax,1                      ; eax减去1sbb edx,0                      ; 减去1则高半部分为0mov dword ptr ds:[Rval],edx    ; 存放高位mov dword ptr ds:[Rval],eax    ; 存放低位; 计算32位减法操作 执行sbb相当于edx中的值5减去原始值1mov edx,5h            ; 设置 edx = 5mov eax,80000000h     ; eax = 80000000hsub eax,90000000h     ; eax - 90000000h = F0000000sbb edx,0             ; edx = edx - 1 = 4invoke ExitProcess,0main ENDP
END main

LEA 指令实现四则运算: Lea指令的使用初衷是取出某个内存的地址,但在汇编手册中可以发现其不止可以取地址同样可以实现算数运算,但这个运算与移位运算符一样只能计算2的次幂,当需要计算一个非次幂数字,则需对其进行分析与拆分,来实现对算数的计算.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include user32.inc
includelib user32.lib
include kernel32.inc
includelib kernel32.libinclude msvcrt.inc
includelib msvcrt.lib.datax DWORD ?y DWORD ?szFmt BYTE '计算结果: %d',0dh,0ah,0
.codemain PROC; 针对加法的lea指令优化mov dword ptr ds:[x],5mov dword ptr ds:[y],3mov eax,dword ptr ds:[x]mov ebx,dword ptr ds:[y]lea eax,dword ptr ds:[eax + 3]         ; eax = edx + 3invoke crt_printf,addr szFmt,eaxlea eax,dword ptr ds:[eax + ebx + 2]   ; eax = eax + ebx + 2invoke crt_printf,addr szFmt,eax; 针对减法的lea指令优化mov dword ptr ds:[x],6mov eax,dword ptr ds:[x]lea eax,dword ptr ds:[eax - 2]         ; eax = eax - 2invoke crt_printf,addr szFmt,eax; 针对乘法的lea指令优化mov dword ptr ds:[x],5mov dword ptr ds:[y],3mov eax,dword ptr ds:[x]xor ebx,ebxlea ebx,dword ptr ds:[eax * 8 + 2]     ; ebx = eax * 8 + 2invoke crt_printf,addr szFmt,ebx; 如果使用lea计算乘法,则乘数必须是2/4/8mov eax,dword ptr ds:[y]               ; eax = 3 => 计算 15 * eaxlea edx,dword ptr ds:[eax * 4 + eax]   ; edx = 4eax + eax => 5eaxlea edx,dword ptr ds:[edx * 2 + edx]   ; edx = 5eax * 2 + 5eax => 15eaxinvoke crt_printf,addr szFmt,edx       ; edx = eax * 15 = 45; 如果计算乘法时乘数非2的次幂,则此时需要减mov eax,dword ptr ds:[y]               ; eax = 3 => 计算 eax * 7 + 10lea edx,dword ptr ds:[eax * 8]         ; edx = eax * 8sub edx,eax                            ; edx = edx - 1eaxadd edx,10                             ; edx = edx + 10invoke crt_printf,addr szFmt,edx       ; edx = eax * 7 + 10mov eax,dword ptr ds:[y]               ; eax = 3 => 计算 eax * 3 - 7lea edx,dword ptr ds:[eax * 2]         ; edx = eax * 2add edx,eax                            ; edx = edx + eaxsub edx,7                              ; edx = edx - 7invoke crt_printf,addr szFmt,edx       ; edx = eax * 3 - 7invoke ExitProcess,0main ENDP
END main

除法转换为乘法: 相比较于乘法运算,除法运算则显得略微复杂些,当计算中被除数为正数时,则可以直接使用sar(算数右移)快速计算除法,如果被除数为负数,则需要使用cdq符号扩展后,然后and edx,xxx之后才能进行相除运算.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include user32.inc
includelib user32.lib
include kernel32.inc
includelib kernel32.libinclude msvcrt.inc
includelib msvcrt.lib.datax DWORD ?y DWORD ?z DWORD ?szFmt BYTE '计算结果: %d',0dh,0ah,0
.codemain PROCmov dword ptr ds:[x],5mov dword ptr ds:[y],-3mov dword ptr ds:[z],-10; 除数为2的优化方式; 被除数为正数(无需扩展): eax => 5 / 2 = 2mov eax,dword ptr ds:[x]   ; 被除数sar eax,1                  ; 算数右移invoke crt_printf,addr szFmt,eax; 被除数为负数(需要扩展): eax => -3 / 2 = -1mov eax,dword ptr ds:[y]   ; 被除数cdq                        ; 符号扩展sub eax,edx                ; 被除数减去edx符号扩展sar eax,1                  ; 算数右移(向下取整完成除法)invoke crt_printf,addr szFmt,eax; 除数为4的优化方式; 被除数为正数(无需扩展): eax => 5 / 4 = 1mov eax,dword ptr ds:[x]sar eax,2invoke crt_printf,addr szFmt,eax; 被除数为负数(需要扩展): eax => -10 / 4 = -2; 抽取出公式来: (x + y - 1) / ymov eax,dword ptr ds:[z]          ; eax = xcdqand edx,3                         ; edx = y-1add eax,edx                       ; eax = eax + edx => x + (y - 1)sar eax,2                         ; 2 => yinvoke crt_printf,addr szFmt,eax; 除数为8的优化方式; 被除数为正数(无需扩展): eax => 5 / 8 = 1mov eax,dword ptr ds:[x]sar eax,3invoke crt_printf,addr szFmt,eax; 被除数为负数(需要扩展): eax => -10 / 8 = -1mov eax,dword ptr ds:[z]cdq                               ; 符号扩展edx要么为1要么为0and edx,7                         ; 被除数 2^n - 1add eax,edx                       ; 被除数与符号扩展相加sar eax,3                         ; 向下取整完成除法计算invoke crt_printf,addr szFmt,eaxinvoke ExitProcess,0main ENDP
END main

除法中的除数与被除数都可以分为有符号与无符号,两种计算方式均有一定差异,其差异如下所示.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include user32.inc
includelib user32.lib
include kernel32.inc
includelib kernel32.libinclude msvcrt.inc
includelib msvcrt.lib.datax DWORD ?y DWORD ?z DWORD ?szFmt BYTE '计算结果: %d',0dh,0ah,0
.codemain PROCmov dword ptr ds:[x],5mov dword ptr ds:[y],10mov dword ptr ds:[z],-10; 除数为(无符号)正2的次幂的计算过程mov eax,dword ptr ds:[x]shr eax,1                  ; eax = 5 / 2mov eax,dword ptr ds:[x]shr eax,2                  ; eax = 5 / 4mov eax,dword ptr ds:[x]shr eax,3                  ; eax = 5 / 8; 被除数为(有符号)的计算过程mov eax,dword ptr ds:[z]cdqsub eax,edxsar eax,1                  ; eax = -10 / 2;neg eax                    ; 将eax取反invoke crt_printf,addr szFmt,eaxmov eax,dword ptr ds:[z]cdqand edx,3add eax,edxsar eax,2                  ; eax = -10 / 4;neg eaxinvoke crt_printf,addr szFmt,eaxmov eax,dword ptr ds:[z]cdqand edx,7add eax,edxsar eax,3                   ; eax = -10 / 8;neg eaxinvoke crt_printf,addr szFmt,eax; 除数为(有符号)负2的次幂的计算过程mov eax,dword ptr ds:[y]    ; y = 10cdqsub eax,edxsar eax,1                   ; eax = 10 / -2neg eax                     ; 将正数 eax翻转为负数 = -5invoke crt_printf,addr szFmt,eaxmov eax,dword ptr ds:[y]    ; y = 10cdqand edx,3add eax,edxsar eax,2                   ; eax = 10 / -4neg eax                     ; eax = -2invoke crt_printf,addr szFmt,eaxmov eax,dword ptr ds:[z]    ; z = -10 cdqand edx,7add eax,edxsar eax,3                   ; eax = -10 / -8 neg eax                     ; eax = 1 (负负得正)invoke crt_printf,addr szFmt,eaxinvoke ExitProcess,0main ENDP
END main

上方的除法运算被除数均为2的次幂,除数的范围也被限定在了2/4/8这样的范围之内,如果是计算非2的次幂该怎么写呢,如下是计算非2的次幂的计算方式,通常情况下编译器会将除法运算转换为乘法,如果需要知道除数是多少则可以使用公式2^(32+n) / M计算后得出.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include user32.inc
includelib user32.lib
include kernel32.inc
includelib kernel32.libinclude msvcrt.inc
includelib msvcrt.lib.datax DWORD ?y DWORD ?z DWORD ?szFmt BYTE '计算结果: %d',0dh,0ah,0
.codemain PROCmov dword ptr ds:[x],5mov dword ptr ds:[y],10mov dword ptr ds:[z],-10; 除法(有符号)非2的幂转换为乘法mov ecx,dword ptr ds:[y]      ; 被除数 ecx = 10 / 3 = 3mov eax,055555556h            ; eax = M值 1431655766imul ecxmov eax,edx                   ; edx = n 计算: 2^(32+n) / Mshr eax,01fh                  ; 计算出除数为 2.9999 => 3add edx,eaxinvoke crt_printf,addr szFmt,edxmov ecx,dword ptr ds:[y]       ; ecx = 10 / 5 = 2mov eax,066666667h             ; 此处的M模值是编译器计算后得到的imul ecxsar edx,1                      ; 想要知道除数是多少,只需要mov eax,edx                    ; 2^(32 + edx) / M = 2^33 / 66666667 = 5shr eax,01fhadd edx,eaxinvoke crt_printf,addr szFmt,edxmov ecx,dword ptr ds:[y]       ; ecx = 10 / 6 = 1mov eax,02AAAAAABh             ; eax = 715827883imul ecxmov eax,edx                    ; 2^(32 + edx) / M = 2^32 / 2AAAAAAB = 6shr eax,01fhadd edx,eaxinvoke crt_printf,addr szFmt,edxmov ecx,dword ptr ds:[z]       ; ecx = -10 / 9 = -1mov eax,038E38E39h             ; eax = 954437177 imul ecxsar edx,1                      ; 2^(32 + edx) / M = 2^33 / 38E38E39 = 9mov ecx,edxshr ecx,01fhadd edx,ecxinvoke crt_printf,addr szFmt,edxinvoke ExitProcess,0main ENDP
END main

上方代码中的除法计算是针对有符号数进行的,如果是针对无符号数则需要以下方式计算.

  .386p.model flat,stdcalloption casemap:noneinclude windows.inc
include user32.inc
includelib user32.lib
include kernel32.inc
includelib kernel32.libinclude msvcrt.inc
includelib msvcrt.lib.datax DWORD ?y DWORD ?z DWORD ?szFmt BYTE '计算结果: %d',0dh,0ah,0
.codemain PROCmov dword ptr ds:[x],-5mov dword ptr ds:[y],10mov dword ptr ds:[z],20; 除法(无符号)非2的次幂(正数)转换为乘法xor edx,edxmov ecx,dword ptr ds:[y]    ; ecx = 10mov eax,0AAAAAAABh          ; ecx / 3 = 3mul ecxshr edx,1invoke crt_printf,addr szFmt,edx; 还原除数: 2 ^(32 + n) / M => 2 ^ (32+2) / 0CCCCCCCDh = 5xor edx,edxmov ecx,dword ptr ds:[y]    ; ecx = 10 => 计算: 10/5mov eax,0CCCCCCCDh          ; eax = Mmul ecxshr edx,2                   ; edx= ninvoke crt_printf,addr szFmt,edx; 还原除数: 2 ^(32 + n) / M => 2 ^ (32+2) / 0AAAAAAABh = 6xor edx,edxmov ecx,dword ptr ds:[y]     ; ecx = 10 => 计算:10/6mov eax,0AAAAAAABh           ; eax = Mmul ecxshr edx,2                    ; edx = ninvoke crt_printf,addr szFmt,edx;还原除数: 2 ^(32 + n) / M => 2 ^ 33 / 038E38E39h = 9xor edx,edxmov ecx,dword ptr ds:[z]     ; ecx = 20  => 计算: 20/9mov eax,038E38E39h           ; eax = Mmul ecxshr edx,1                    ; edx = ninvoke crt_printf,addr szFmt,edx; 除法(无符号)非2的次幂(负数)转换为乘法; 还原除数: 2 ^(32 + n) / M => 2 ^ 33 / 0AAAAAAABh = nge(3) => -3xor edx,edxmov ecx,dword ptr ds:[z]      ; ecx = 20  => 计算: 20/-3mov eax,0AAAAAAABh            ; eax = Mmul ecxshr edx,1                     ; edx = n neg edx                       ; edx=6 结果neg取反invoke crt_printf,addr szFmt,edx; 还原除数: 2 ^(32 + n) / M => 2 ^ 62 / 040000001h = 4294967292; 输入的时候以QWORD输入.然后再点击一下变成DWORD则可以看到表达为-4; 此时直接对其NOT取反则可以得到原始的被除数的绝对值,前面加上负数即可xor edx,edxmov ecx,dword ptr ds:[y]       ; ecx = 10 => 计算: 10 / -3mov eax,040000001h             ; eax = Mmul ecxshr edx,01eh                   ; edx = ninvoke crt_printf,addr szFmt,edxinvoke ExitProcess,0main ENDP
END main

本文作者: 王瑞
本文链接: https://www.lyshark.com/post/b4026f94.html
版权声明: 本博客所有文章除特别声明外,均采用 BY-NC-SA 许可协议。转载请注明出处!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/47979.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

面试题-React(四):React中的事件绑定如何实现?有几种方式?

一、React事件绑定机制 在React中,事件绑定是通过JSX语法来实现的。你可以将事件处理函数直接绑定到元素的属性上,比如onClick、onMouseOver等。当触发相应事件时,绑定的事件处理函数将被调用。 React采用了一种合成事件(Synthe…

玄子Share - HTML Emmet 语法详细介绍

玄子Share - HTML Emmet 语法详细介绍 以下Emmet语法 基于WebStorm 2023.2演示 Emmet 语法介绍 Emmet 是一种缩写语法,旨在简化 HTML 和 CSS 的编写。它基于 CSS 选择器的语法结构,通过输入特定的缩写,可以快速生成 HTML 结构。 Emmet 语法…

安卓修改SwitchCompat色值

SwitchCompat控件色值跟系统设置的主题有关,但是主题效果不是能轻易就能改的,因为涉及到整个APP的样式。网上方案基本都是通过修改style文件来改变色值,经过多次尝试修改最终觉得单独修改控件色值比较好。 一、控件属性 //修改开关色值就是最…

面试之快速学习STL-multimap

multimap multimap 容器也用于存储 pair<const K, T> 类型的键值对&#xff08;其中 K 表示键的类型&#xff0c;T 表示值的类型&#xff09;其中各个键值对的键不能做修改&#xff1b;该容器也会自行根据键的大小对存储的所有键值对做排序操作。和 map 容器的区别在于&…

Linux相关知识点

Linux是什么&#xff1f; Linux是一套免费使用和自由传播的类Unix操作系统&#xff0c;是一个基于POSIX和UNIX的多用户、多任务、支持多线程和多CPU的操作系统。它能运行主要的UNIX工具软件、应用程序和网络协议。它支持32位和64位硬件。 Linux内核 是一个Linux系统的内核&…

【JUC】线程池ThreadPoolTaskExecutor与面试题解读

1、ThreadPoolTaskExecutor 创建线程池 从它的创建和使用说起&#xff0c;创建和使用的代码如下&#xff1a; 创建&#xff1a; ThreadPoolTaskExecutor executor new ThreadPoolTaskExecutor();executor.setCorePoolSize(corePoolSize);executor.setMaxPoolSize(maxPoolSize…

Python web实战之细说Django的集成测试

关键词&#xff1a; Python Web开发、Django、集成测试、实战、测试驱动开发、自动化测试、Selenium、测试框架、测试用例、代码覆盖率、持续集成 今天给大家分享一下Python Web开发——Django的集成测试&#xff0c;如何利用集成测试来提高代码质量、减少bug。 1. 什么是集成…

Apache Zookeeper架构和选举机制

ZooKeeper是一个开源的分布式协调服务,旨在解决分布式系统中的一致性、配置管理、领导者选举等问题。它由Apache软件基金会维护,是Hadoop生态系统的一部分,被广泛用于构建高可用、可靠和具有一致性的分布式应用程序和服务。 ZooKeeper提供了一个层次化的命名空间,类似于文…

Java之继承详解二

3.7 方法重写 3.7.1 概念 方法重写 &#xff1a;子类中出现与父类一模一样的方法时&#xff08;返回值类型&#xff0c;方法名和参数列表都相同&#xff09;&#xff0c;会出现覆盖效果&#xff0c;也称为重写或者复写。声明不变&#xff0c;重新实现。 3.7.2 使用场景与案例…

Spring复习:(55)ApplicationContext中BeanFactoryPostProcessor是怎么添加到容器的?

容器创建时会调用AbstractApplicationContext的refresh方法&#xff0c;其中会调用invokeBeanFactoryPostProcessor方法&#xff0c;如下图 invokeBeanFactoryPostProcessors代码如下&#xff1a; 其中调用的PostProcessorRegistrationDelegate的invokeBeanFactoryPostProcess…

计算机竞赛 交通目标检测-行人车辆检测流量计数 - 计算机竞赛

文章目录 0 前言1\. 目标检测概况1.1 什么是目标检测&#xff1f;1.2 发展阶段 2\. 行人检测2.1 行人检测简介2.2 行人检测技术难点2.3 行人检测实现效果2.4 关键代码-训练过程 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是 &#x1f6a9; 毕业设计…

vue组件注册

组件注册分为全局注册和局部注册 全局注册 在 main.js 或者入口文件中 import { createApp } from vue; import MyComponent from ./components/MyComponent.vue;const app createApp();app.component(my-component, MyComponent);app.mount(#app); 我们首先通过createApp…

转圈游戏 (Day1 T1)

全国 2013 NOIP 提高组试题 题目描述 Description n个小伙伴&#xff08;编号从0到n-1&#xff09;围坐一圈玩游戏。按照顺时针方向给n个位置编号&#xff0c;从0到n-1。最初&#xff0c;从0号小伙伴在第0号位置&#xff0c;第1号小伙伴在第1号位置&#xff0c;…&#xff0c…

【Flutter】Flutter 使用 font_awesome_flutter 展示图标

【Flutter】Flutter 使用 font_awesome_flutter 展示图标 文章目录 一、前言二、安装和基本使用1. 安装2. 基本使用示例3. 图标的命名和样式 三、自定义图标和高级功能1.动态检索图标2.排除样式和优化 四、完整示例五、总结 一、前言 在现代移动应用开发中&#xff0c;图标起着…

C语言入门 Day_8数据与运算小结

目录 前言 1.精度 2.运算 2.易错点 3.思维导图 前言 到目前为止我们一共学习了四种数据类型&#xff0c;他们分别是表示整数的整型&#xff1b;表示小数的浮点型&#xff1b;表示字符的字符型&#xff1b;和表示布尔数的布尔型。 表示整数的整型&#xff0c;它的变量类型名…

浅谈泛在电力物联网在电力设备状态在线监测中的应用

安科瑞 华楠 摘要&#xff1a;随着信息化水平的不断发展&#xff0c;泛在电力物联网的建设提上日程&#xff0c;这对提升变电站电力设备在线监测水平&#xff0c;推动智能电网发展具有重要的指导意义。对基于物联网的电力设备状态监测系统进行了研究&#xff0c;概括了泛在电力…

Android TV开发之VerticalGridView

Android TV应用开发和手机应用开发是一样的&#xff0c;只是多了焦点控制&#xff0c;即选中变色。 androidx.leanback.widget.VerticalGridView 继承 BaseGridView &#xff0c; BaseGridView 继承 RecyclerView 。 所以 VerticalGridView 就是 RecyclerView &#xff0c;使…

Redis高可用:哨兵机制(Redis Sentinel)详解

目录 1.什么是哨兵机制&#xff08;Redis Sentinel&#xff09; 2.哨兵机制基本流程 3.哨兵获取主从服务器信息 4.多个哨兵进行通信 5.主观下线和客观下线 6.哨兵集群的选举 7.新主库的选出 8.故障的转移 9.基于pub/sub机制的客户端事件通知 1.什么是哨兵机制&#xf…

重生之我要学C++第六天(const,static,友元)

这篇文章的主要内容是const以及权限问题、static关键字、友元函数和友元类&#xff0c;希望对大家有所帮助&#xff0c;点赞收藏评论支持一下吧&#xff01; 更多优质内容跳转&#xff1a; 专栏&#xff1a;重生之C启程(文章平均质量分93) 目录 const以及权限问题 1.const修饰…

【计算机网络】【常考问题总结】

1. ping 127.0.0.1 后会发生什么&#xff1f; ping 127.0.0.1 &#xff1b;ping 0.0.0.0 &#xff1b; ping localhost 面试官问&#xff1a;断网了&#xff0c;还能ping通 127.0.0.1 吗&#xff1f;为什么&#xff1f;_kevin_tech的博客-CSDN博客 2. MTU&#xff0c;MMU是…