新书速递 | 《知识图谱:方法、实践与应用》

本文转载自公众号:博文视点Broadview 。


互联网促成了大数据的集聚,大数据进而促进了人工智能算法的进步。近年来知识图谱作为AI领域底层技术被越来越多的人谈起。知识图谱的升温得益于新数据和新算法为规模化知识图谱构建提供了新的技术基础和发展条件,使得知识图谱构建的来源、方法和技术手段都发生了极大的变化。

知识图谱本身可以看作是一种新型的信息系统基础设施,旨在从数据中识别、发现和推断事物与概念之间的复杂关系,是事物关系的可计算模型。知识图谱最早的应用是提升搜索引擎的能力。随后,知识图谱在辅助智能问答、自然语言理解、大数据分析、推荐计算、物联网设备互联、可解释性人工智能等多个方面展现出丰富的应用价值。

640?wx_fmt=png

知识图谱:事物关系的可计算模型

如果知识是人类进步的阶梯,知识图谱就是AI进步的阶梯。知识图谱作为知识的一种形式,已经在语义搜索、智能问答、数据分析、自然语言理解、视觉理解、物联网设备互联等多个方面发挥出越来越大的价值。AI浪潮愈演愈烈,而作为底层支撑的知识图谱赛道也从鲜有问津到缓慢升温,虽然还谈不上拥挤,但作为通往未来的必经之路,注定会走上风口。

为了帮助更多的人学习了解这项技术,由王昊奋、漆桂林、陈华钧等多位知识图谱专家合力编著的《知识图谱:方法、实践与应用》现已开放预售!

640?wx_fmt=jpeg

(点击封面了解详情)

通过本书,读者一方面可以系统性了解知识图谱的基本概念、发展历史和技术前沿,另一方面从工程实践的角度训练自己构建和应用知识图谱的实战能力。
640?wx_fmt=png

本书适合有一定自然语言处理和机器学习基础,希望深入研究知识图谱的数据工程师、高校师生和研究者阅读。

  • 主 要 作 者 简 介

王昊奋

上海交通大学计算机博士。中文知识图谱zhishi.me创始人、OpenKG发起人之一、CCF理事、CCF术语审定工委主任、CCF TF执委、中文信息学会语言与知识计算专委会副秘书长、上海交通大学校友会AI分会秘书长。在知识图谱、问答系统和聊天机器人等诸多领域有丰富的研发经验。

漆桂林

东南大学计算机学院教授、东南大学认知智能研究所所长、南京柯基数据科技有限公司首席科学家、OpenKG发起人之一、中国中文信息学会语言与知识计算专业委员会副主任、中国科学技术情报学会知识组织专业委员会副主任、爱思唯尔(Elsevier)数据管理顾问委员会顾问、国际期刊 Journal of Data Intelligence 执行主编。科研成果在电力故障智能检测和知识推送、医药知识问答及网络安全态势感知系统等领域得到了实际应用。

陈华钧

浙江大学计算机科学与技术学院教授。浙江大学阿里巴巴知识引擎联合实验室负责人、浙江省大数据智能计算重点实验室副主任、中国人工智能学会知识工程与分布智能专业委员会副主任委员、中国中文信息学会语言与知识计算专业委员会副主任委员、OpenKG发起人。曾获国际语义网会议ISWC最佳论文奖。

  • 主 要 结 构

第1章  知识图谱概述 1

1.1  什么是知识图谱 1

1.2  知识图谱的发展历史 2

1.3  知识图谱的价值 5

1.4  国内外典型的知识图谱项目 9

1.5  知识图谱的技术流程 15

1.6  知识图谱的相关技术 19

1.7  本章小结 30

第2章  知识图谱表示与建模 40

2.1  什么是知识表示 40

2.2  人工智能早期的知识表示方法 43

2.3  互联网时代的语义网知识表示框架 48

2.4  常见开放域知识图谱的知识表示方法 64

2.5  知识图谱的向量表示方法 68

2.6  开源工具实践:基于Protégé的本体知识建模 77

2.7  本章小结 80

第3章  知识存储 82

3.1  知识图谱数据库基本知识 82

3.2  常见知识图谱存储方法 91

3.3  知识存储关键技术 121

3.4  开源工具实践 126

第4章  知识抽取与知识挖掘 133

4.2  面向非结构化数据的知识抽取 136

4.3  面向结构化数据的知识抽取 154

4.4  面向半结构化数据的知识抽取 161

4.5  知识挖掘 168

4.6  开源工具实践:基于DeepDive的关系抽取实践 178

第5章  知识图谱融合 184

5.1  什么是知识图谱融合 184

5.2  知识图谱中的异构问题 185

5.3  本体概念层的融合方法与技术 190

5.4  实例层的融合与匹配 236

5.5  开源工具实践:实体关系发现框架LIMES 266

5.6  本章小结 269

第6章  知识图谱推理 279

6.1  推理概述 279

6.2  基于演绎的知识图谱推理 283

6.3  基于归纳的知识图谱推理 306

6.4  知识图谱推理新进展 324

6.5  开源工具实践:基于Jena和Drools的知识推理实践 327

6.6  本章小结 329

第7章  语义搜索 334

7.1  语义搜索简介 334

7.2  结构化的查询语言 336

7.3  语义数据搜索 342

7.4  语义搜索的交互范式 348

7.5  开源工具实践 355

第8章  知识问答 366

8.1  知识问答概述 366

8.2  知识问答的分类体系 371

8.3  知识问答系统 376

8.4  知识问答的评价方法 386

8.5  KBQA前沿技术 392

8.6  开源工具实践 406

第9章  知识图谱应用案例 420

9.1  领域知识图谱构建的技术流程 420

9.2  领域知识图谱构建的基本方法 425

9.3  领域知识图谱的应用案例 428

9.4  本章小结 460


OpenKG

开放知识图谱(简称 OpenKG)旨在促进中文知识图谱数据的开放与互联,促进知识图谱和语义技术的普及和广泛应用。

640?wx_fmt=jpeg

点击阅读原文,进入 OpenKG 博客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/479507.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Github Star过万的阿里学长独家干货分享

浅梦是我认识的一位浙大计算机系的学长,目前在阿里从事算法相关的工作。无论在学校还是工作中,他都保持着对新知识的学习和分享。他的github star 1w,世界排名700,参与开发的项目下载量接近30w次。主要涉及「推荐系统」&#xff0…

React Native在美团外卖客户端的实践

MRN简介 MRN(Meituan React Native) 是基于开源的React Native框架改造并完善而成的一套动态化方案,在开发体验上基本能与原生RN保持一致,同时从业务需求的角度满足从开发、构建、测试、部署、运维的工程化需要。解决了一系列痛点…

论文浅尝 | 使用预训练深度模型和迁移学习方法的端到端模糊实体匹配

论文笔记整理:高凤宁,南京大学硕士,研究方向为知识图谱、实体消解。链接:https://doi.org/10.1145/3308558.3313578动机目前实体匹配过程中实体之间的差异比较微妙,不同的情况下可能会有不同的决策结果,导致…

推荐几个Android开发非常有用的工具(for android studio)

原文地址: http://stormzhang.com/android/2015/05/26/android-tools/ 一晃好久没更新博客了,最近一个月真的很忙,因为公司在准备C轮融资,公司的发展到了一个关键的阶段,自己全部精力投入在公司产品上,这个状态可能还会…

分布式机器学习(下)-联邦学习

原文链接:https://zhuanlan.zhihu.com/p/114028503 本视频来源于Shusen Wang讲解的《分布式机器学习》,总共有三讲,内容和连接如下:并行计算与机器学习(上)并行计算与机器学习(下)联…

怎样将Embedding融入传统机器学习框架?

文 | 石塔西源 | 知乎LR本身是一个经典的CTR模型,广泛应用于推荐/广告系统。输入的特征大多数是离散型/组合型。那么对于Embedding技术,如何在不使用深度学习模型的情况下(假设就是不能用DNN),融入到LR框架中呢&#x…

推荐系统中的Embedding

推荐系统之Embedding一、什么是embedding?1. 让embedding空前流行的word2vec:2. 从word2vec到item2vec二、Graph Embedding1. 经典的Graph Embedding方法 — DeepWalk2. DeepWalk改进 — Node2vec3. 阿里的Graph Embedding方法EGES三、深度学习推荐系统中…

美团下一代服务治理系统 OCTO 2.0 的探索与实践

本文根据美团基础架构部服务治理团队工程师郭继东在2019 QCon(全球软件开发大会)上的演讲内容整理而成,主要阐述美团大规模治理体系结合 Service Mesh 演进的探索实践,希望对从事此领域的同学有所帮助。 一、OCTO 现状分析 OCTO 是…

技术动态 | 跨句多元关系抽取

本文转载自公众号&#xff1a;知识工场。第一部分 概述关系抽取简介关系抽取是从自由文本中获取实体间所具有的语义关系。这种语义关系常以三元组 <E1,R,E2> 的形式表达&#xff0c;其中&#xff0c;E1 和E2 表示实体&#xff0c;R 表示实体间所具有的语义关系。如图1所示…

网络解析(一):LeNet-5详解

原文链接&#xff1a;https://cuijiahua.com/blog/2018/01/dl_3.html 2018年1月9日21:03:313994,282 C摘要LeNet-5出自论文Gradient-Based Learning Applied to Document Recognition&#xff0c;是一种用于手写体字符识别的非常高效的卷积神经网络。一、前言LeNet-5出自论文Gr…

LeetCode 69. x 的平方根(二分查找)

文章目录1. 题目2.解题2.1 二分查找2.2 牛顿迭代1. 题目 实现 int sqrt(int x) 函数。 计算并返回 x 的平方根&#xff0c;其中 x 是非负整数。 由于返回类型是整数&#xff0c;结果只保留整数的部分&#xff0c;小数部分将被舍去。 示例 1:输入: 4 输出: 2 示例 2:输入: 8…

Google综述:细数Transformer模型的17大高效变种

文 | 黄浴来源 | 知乎在NLP领域transformer已经是成功地取代了RNN&#xff08;LSTM/GRU&#xff09;&#xff0c;在CV领域也出现了应用&#xff0c;比如目标检测和图像加注&#xff0c;还有RL领域。这是一篇谷歌2020年9月份在arXiv发表的综述论文 “Efficient Transformers: A …

从ReentrantLock的实现看AQS的原理及应用

前言 Java中的大部分同步类&#xff08;Lock、Semaphore、ReentrantLock等&#xff09;都是基于AbstractQueuedSynchronizer&#xff08;简称为AQS&#xff09;实现的。AQS是一种提供了原子式管理同步状态、阻塞和唤醒线程功能以及队列模型的简单框架。本文会从应用层逐渐深入到…

论文浅尝 | 利用知识-意识阅读器改进的不完整知识图谱问答方法

论文笔记整理&#xff1a;谭亦鸣&#xff0c;东南大学博士生&#xff0c;研究方向为知识库问答。来源&#xff1a;ACL2019链接&#xff1a;https://www.aclweb.org/anthology/P19-1417/本文提出了一种融合不完整知识图谱与文档集信息的end2end问答模型&#xff0c;旨在利用结构…

MVP模式在Android中的应用(附UML高清大图,使用RecyclerView举例)

传了一张图&#xff0c;图比较大&#xff0c;请移步下载&#xff1a;http://download.csdn.net/detail/u011064099/9266245 在看代码之前&#xff0c;首先简单看一下什么是MVP模式&#xff1a;http://www.cnblogs.com/end/archive/2011/06/02/2068512.html MVP最核心就是将界面…

Facebook大公开:解决NLG模型落地难题!工业界的新一波春天?

文 | 小喂老师编 | 小轶作为NLP领域的“三高”用户&#xff08;高产、高能、高钞&#xff09;&#xff0c;FaceBook最近&#xff08;2020年11月&#xff09;又发表了一篇高水准文章&#xff0c;目前已被COLING-2020接收&#xff0c;号称解决了自然语言生成&#xff08;NLG&…

论文浅尝 | 如何利用外部知识提高预训练模型在阅读理解任务中的性能

论文笔记整理&#xff1a;吴桐桐&#xff0c;东南大学博士生&#xff0c;研究方向为自然语言处理。链接&#xff1a;https://www.aclweb.org/anthology/P19-1226/近年来&#xff0c;机器阅读理解已经逐渐发展为自然语言理解方向的主流任务之一。最近&#xff0c;预训练模型尤其…

美团外卖前端容器化演进实践

背景 提单页的位置 提单页是美团外卖交易链路中非常关键的一个页面。外卖下单的所有入口&#xff0c;包括首页商家列表、订单列表页再来一单、二级频道页的今日推荐等&#xff0c;最终都会进入提单页&#xff0c;在确认各项信息之后&#xff0c;点击提交订单按钮&#xff0c;完…

LeetCode 807. 保持城市天际线

文章目录1. 题目2. 解题1. 题目 在二维数组grid中&#xff0c;grid[i][j]代表位于某处的建筑物的高度。 我们被允许增加任何数量&#xff08;不同建筑物的数量可能不同&#xff09;的建筑物的高度。 高度 0 也被认为是建筑物。 最后&#xff0c;从新数组的所有四个方向&#…

提供一个Android原生的Progress——SwipeToRefreshLayout下拉刷新时的等待动画

先来上个图看看效果&#xff1a; 这里我为什么要单独把这个拿出来呢&#xff0c;因为最近才开始接触Android最新的东西&#xff0c;也就是5.0以上的东西&#xff0c;发现Android提供的SwipeToRefreshLayout是没有上拉加载更多的&#xff0c;在网上找了不少第三方提供加载更多的…