检索式问答以及评论观点抽取+情感分析

3款开发者神器,快速搭建「检索、问答、情感分析」应用!

自然语言处理技术在各行业有着广泛的应用,然而长久以来,其落地并不是一帆风顺的。

04e8122f5c56db21234b5dec37195074.png

3e97db2b1ca5c5d6c95ec4395be006bb.png

b15fabfe61a5f64328a33862267dd390.png

3327c57b267bd2895d22e0bb0df107a6.png

针对这些棘手的问题,百度飞桨深耕产业界,选取NLP领域三大高频场景——检索、问答、情感分析,推出面向真实应用场景的系统功能,覆盖金融、电商零售、文娱、旅游、房地产、生活服务等多个行业,万方、荣耀、国美、驴妈妈旅游网、房天下、食行生鲜等均已基于相关方案成功完成业务上线。

b68874a57a32b909befb647fa2b1ab0d.gif

语义检索系统

检索系统存在于人们日常使用的很多产品中,比如商品搜索、学术文献检索、通用搜索引擎等。传统方法匹配能力有限,只能捕捉字面匹配,而语义检索能够捕捉深层语义信息,达到更精准、更广泛地召回相似结果的目的。

ebfffabfdb3f6579ee6fdfc47ed4f6a5.gif

图:基于字面的稀疏向量检索 vs 基于语义的稠密向量检索

PaddleNLP本次推出语义检索系统,流程图如下,其中左侧为召回环节,核心是语义向量抽取模型;右侧是排序环节,核心是排序模型

070a79f52a5def9dd5a7fbae78c6b80f.png

图:PaddleNLP Neural Search语义检索系统流程图

具备三大亮点:

  • 低门槛:数据+代码+模型全部开源,无需标注数据也能够轻松构建起检索系统,并且提供训练、预测、近似最近邻(ANN)搜索一站式能力。

  • 精度高:结合业界前沿模型和自有创新思路,推出适用多种数据情况、灵活的技术方案,精度超高。

表:不同技术方案下的Recall@K指标

85df84a2e4f3e532f54b1db70f127cb0.png

  • 性能好:与开源向量数据库Milvus打通,结合Paddle Inference,实现高性能建库,并在千万级数据中做到毫秒级快速查询。

b54a41b8ab27bf53f3f591731ca296b0.png

图:文献检索示例

前往GitHub获取开源代码和模型:

https://github.com/PaddlePaddle/PaddleNLP/tree/develop/applications/neural_search

预训练时代的端到端问答 - RocketQA

问答系统是信息检索系统的一种高级形式,它能用准确、简洁的自然语言回答用户提出的问题,问答系统广泛应用于搜索引擎、智能设备、智能客服等产品中。

8df4e655b131cd7f0e9a14e687554dcc.png

图:问答系统应用示例

传统的问答系统通常由多个模块级联组成,而在预训练时代我们可以用一个端到端模型代替传统的复杂系统,实现更好的效果。然而,研发端到端问答模型需要大量的计算和数据资源,为了使更多开发者能方便地获取最先进的问答技术,我们推出了RocketQA开发工具,有三大亮点:

  • 领先:提供国际领先的端到端问答技术-RocketQA,效果远超传统问答系统,与国际知名公司的技术方案相比也有一定优势。

26449441d899c01a5dc2af8089b83309.png

  • 中文:开源首个中文端到端问答模型,该模型基于知识增强的预训练模型ERNIE和百万量级的人工标注数据集DuReader训练得到,效果优异。

  • 易用:提供11种预置模型、2种安装方式和极简的开发接口,基于神经搜索框架JINA和近似近邻检索库FAISS,2行命令即可搭建自己的问答系统。

4e8318b5cf589f01a031183e053fa67f.png

前往GitHub获取开源代码和模型:

https://github.com/PaddlePaddle/RocketQA

情感分析系统 

情感分析旨在对带有情感色彩的主观性文本进行分析、处理、归纳和推理,其广泛应用于消费决策、舆情分析、个性化推荐等领域,具有很高的商业价值。

依托百度领先的情感分析技术,食行生鲜自动生成菜品评论标签辅助用户购买,并指导运营采购部门调整选品和促销策略;房天下向购房者和开发商直观展示楼盘的用户口碑情况,并对好评楼盘置顶推荐;国美搭建服务智能化评分系统,客服运营成本减少40%,负面反馈处理率100%。

为了降低技术门槛,方便开发者共享效果领先的情感分析技术,PaddleNLP本次开源的情感分析系统,具备三大亮点:

  • 覆盖任务全:集成句子级情感分类、评论观点抽取、属性级情感分类等多种情感分析能力,并开源模型,且打通模型训练、评估、预测部署全流程。

a29f6cd2028b3c3261b144149334f98a.png

图:PaddleNLP Sentiment Analysis核心能力展示

  • 效果领先:集成百度研发的基于情感知识增强的预训练模型SKEP,为各类情感分析任务提供统一且强大的情感语义表示能力。

efa2dd857b30882679903997c3193b85.png

  • 预测性能强:针对预训练模型预测效率低的问题,开源小模型PP-MiniLM,配套裁剪、量化优化策略,预测性能提速900%!

前往GitHub获取开源代码和模型:

https://github.com/PaddlePaddle/PaddleNLP/tree/develop/applications/sentiment_analysis

如果您想了解详细技术方案和完整代码、下载开源数据和模型,欢迎关注GitHub Repo,也可在直播中与百度高工交流哦:

PaddleNLP: https://github.com/PaddlePaddle/PaddleNLP

RocketQA: https://github.com/PaddlePaddle/RocketQA

直播预告课

12.28~12.30日每晚20:15~21:30,百度高工将带来直播讲解,剖析行业痛点问题,深入解读系统方案,并带来手把手项目实战。阅读原文即可报名,或者扫码上车!我们直播间不见不散~

扫码报名直播课,加入技术交流群

54217db34103331790299d50a38fe695.png

更多精彩抢先看

26f38179c4998dc10db85ced4915fa24.png

</article>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/478341.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

征稿 | Call for papers on Knowledge Graphs

Knowledge graph是Data Intelligence的核心主题和期刊特色之一。为持续展示这一领域的最新进展和前沿成果&#xff0c;Data Intelligence正在与国际学者一道策划两期Knowledge graph专辑。期待大家关注并积极投稿参与&#xff01;DI专辑Special Issue on Personal Health Knowl…

LeetCode 179. 最大数(自定义谓词函数--Lambda表达式--排序)

1. 题目 给定一组非负整数&#xff0c;重新排列它们的顺序使之组成一个最大的整数。 示例 1: 输入: [10,2] 输出: 210示例 2: 输入: [3,30,34,5,9] 输出: 9534330 说明: 输出结果可能非常大&#xff0c;所以你需要返回一个字符串而不是整数。来源&#xff1a;力扣&#xff08…

python实现requests访问接口,比如es接口

首先我们先引入requests模块 import requests一、发送请求 r requests.get(https://api.github.com/events) # GET请求 r requests.post(http://httpbin.org/post, data {key:value}) # POST请求 r requests.put(http://httpbin.org/put, data {key:value}) # PUT请求 r…

拿下字节offer,这些面试题命中率高达90%以上

昨天在知乎上刷到一个热门问题:程序员需要达到什么水平才能顺利拿到 20k 无压力&#xff1f;其中一个最热门的回答是&#xff1a;“其实&#xff0c;无论你是前端还是后端、想进大厂还是拿高薪&#xff0c;算法都一定很重要。”为什么&#xff0c;算法会如此重要&#xff1f;不…

HDFS NameNode重启优化

本文已发表于InfoQ&#xff0c;下面的版本又经过少量修订。 一、背景 在Hadoop集群整个生命周期里&#xff0c;由于调整参数、Patch、升级等多种场景需要频繁操作NameNode重启&#xff0c;不论采用何种架构&#xff0c;重启期间集群整体存在可用性和可靠性的风险&#xff0c;所…

LeetCode 4. 寻找两个有序数组的中位数(二分查找,难)

文章目录1. 题目2. 解题2.1 合并数组2.2 优化2.1解法&#xff0c;双指针2.3 二分法&#xff08;找第k个数&#xff09;2.4 切分法1. 题目 给定两个大小为 m 和 n 的有序数组 nums1 和 nums2。 请你找出这两个有序数组的中位数&#xff0c;并且要求算法的时间复杂度为O(log(mn…

论文浅尝 | 当Hearst还不够时:用分布模型来提升语料库中的上下义关系检测

笔记整理 | 潘晓梅&#xff0c;东南大学硕士&#xff0c;研究方向为知识图谱构建、自然语言处理。来源&#xff1a;EMNLP 2020.论文下载地址&#xff1a; https://www.aclweb.org/anthology/2020.emnlp-main.502.pdf项目源码地址&#xff1a; https://github.com/ccclyu/ComHyp…

LeetCode 887. 鸡蛋掉落(DP,难、不懂)

1. 题目 你将获得 K 个鸡蛋&#xff0c;并可以使用一栋从 1 到 N 共有 N 层楼的建筑。 每个蛋的功能都是一样的&#xff0c;如果一个蛋碎了&#xff0c;你就不能再把它掉下去。 你知道存在楼层 F &#xff0c;满足 0 < F < N 任何从高于 F 的楼层落下的鸡蛋都会碎&…

正确的LeetCode刷题姿势!

名师 带你刷爆LeetCode算法知识 讲解训练免费0元报名参加在讲到 AI 算法工程师时&#xff0c;大部分同学关注点都在高大上的模型&#xff0c;一线优秀的项目。但大家往往忽略了一点&#xff0c;人工智能的模型、项目最终还是要靠程序和算法实现。算法能力是每一个程序员的基本功…

论文浅尝 | DI刊发的那些有关Knowledge Graph的论文

本文转载自公众号&#xff1a;数据智能英文刊知识图谱被称为人工智能的基石&#xff0c;它的前身是语义网&#xff0c;由谷歌在2012年率先提出&#xff0c;用于改善自身的搜索业务。Data Intelligence执行主编、东南大学计算机科学与技术学院漆桂林教授这样定义知识图谱&#x…

缓存那些事

本文已发表于《程序员》杂志2017年第3期&#xff0c;下面的版本又经过进一步的修订。 一般而言&#xff0c;现在互联网应用&#xff08;网站或App&#xff09;的整体流程&#xff0c;可以概括如图1所示&#xff0c;用户请求从界面&#xff08;浏览器或App界面&#xff09;到网络…

LeetCode 42. 接雨水(双指针、单调栈)

文章目录1. 题目2. 解题2.1 正反扫描法2.2 双指针2.3 单调栈1. 题目 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图&#xff0c;计算按此排列的柱子&#xff0c;下雨之后能接多少雨水。 上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图&#xff0c;在这种情况下&am…

论文浅尝 - IJCAI | Knowledge is NOT always you need: 外部知识注入预训练模型的利与弊...

转载公众号 | 浙大KG论文题目&#xff1a;Drop Redundant, Shrink Irrelevant: Selective Knowledge Injection for Language Model Pretraining本文作者&#xff1a;张宁豫&#xff08;浙江大学&#xff09;、邓淑敏&#xff08;浙江大学&#xff09;、张亦弛&#xff08;阿里…

圆形的CNN卷积核?华中大清华康奈尔提出圆形卷积,进一步提升卷积结构性能!...

文 | 小马编 | 极市平台写在前面目前正常卷积的感受野大多都是一个矩形的&#xff0c;因为矩形更有利于储存和计算数据的方便。但是&#xff0c;人类视觉系统的感受野更像是一个圆形的。因此&#xff0c;作者就提出&#xff0c;能不能将CNN卷积核的感受野也变成圆形呢&#xff…

Android自定义Lint实践

Android Lint是Google提供给Android开发者的静态代码检查工具。使用Lint对Android工程代码进行扫描和检查&#xff0c;可以发现代码潜在的问题&#xff0c;提醒程序员及早修正。 为保证代码质量&#xff0c;美团在开发流程中加入了代码检查&#xff0c;如果代码检测到问题&…

关于PaddleNLP如何加载训练好的模型进行NER

关于PaddleNLP如何加载训练好的模型进行NER 关于PaddleNLP如何加载训练好的模型进行NER 当时在如何加载已经训练好的模型的问题上花了很长时间&#xff0c;后来也是受另一篇文章启发&#xff0c;问题才得以解决&#xff0c;此文章写的很详细&#xff0c;所以不再详细介绍&#…

论文浅尝 | 利用机器翻译和多任务学习进行复杂的知识图谱问答

笔记整理 | 谭亦鸣&#xff0c;东南大学博士生。来源&#xff1a;EACL‘21链接&#xff1a;https://www.aclweb.org/anthology/2021.eacl-main.300.pdf概述知识图谱问答过程一般包括实体链接&#xff0c;多跳推理等步骤&#xff0c;传统方法将各个步骤作为模块单独处理&#xf…

LeetCode 134. 加油站(贪心)

文章目录1. 题目2. 解题1. 题目 在一条环路上有 N 个加油站&#xff0c;其中第 i 个加油站有汽油 gas[i] 升。 你有一辆油箱容量无限的的汽车&#xff0c;从第 i 个加油站开往第 i1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发&#xff0c;开始时油箱为空。 …

诺奖级成果开源!为什么说AlphaFold2足以改变全人类?

文 | 炼丹学徒编 | 小轶前天&#xff0c;AlphaFold2开源&#xff0c;相信大家被大大小小的公众号刷屏了。谷歌Deepmind团队此前使用基于Transformer的模型&#xff0c;在CASP14比赛上&#xff0c;刷新蛋白质三维结构预测的新高度&#xff0c;而详细论文&#xff0c;代码&#x…

美团外卖前端可视化界面组装平台 —— 乐高

乐高&#xff0c;是美团点评一个快速搭建后台系统页面的平台。名称来源于大家熟悉的丹麦知名玩具品牌&#xff0c;他们的玩具都是通过组合易拆卸、装配的零件&#xff0c;形成最终的作品。经过长期的发展&#xff0c;乐高品牌渐渐有了“快乐、想象、创意的未来”的寓意。 随着外…