会议交流 | DataFunSummit 2022:图机器学习在线峰会

  cb379ffe09b0398e968ae6d09b424e14.png

深度学习模型是当今人工智能研究的核心。众所周知,对欧几里得数据(例如图像)和序列数据(例如文本)具有颠覆性学习能力的深度学习技术不能直接适用于图结构数据。这种差距推动了图深度学习研究的浪潮,在学术界不断取得了突出的成绩,但同时在某些特定场景下的应用仍面临许多挑战,包括从方法论的合理性到实际商业业务表现。特此,我们非常希望通过一个渠道,让广大的图机器学习同行和爱好者们聚集在一起,共同探讨图机器学习的边界问题。

2022年06月25日,DataFunSummit 2022:图机器学习在线峰会将如约而至。本次峰会的形式再次创新,由图与推荐与DataFun发起,联合主席 百图生科 首席AI科学家 宋乐 与 京东探索研究院 算法科学家 詹忆冰,特邀荣誉主席 亚马逊云科技 上海人工智能研究院院长 张峥,以及荣誉主席京东 首席科学家 吴凌飞 与 腾讯 TEG 机器学习平台部总监 陶阳宇 携手 8 位出品人共同策划而成,既包括前沿的学术分享、又有来自国内外头部大厂的工业实践分享,专家云集,会议全程直播,精彩不容错过!

本次峰会在去年第一届图机器学习峰会的基础上,进行了局部优化微调,共设置GNN 基础模型、复杂图、NLP与图、大规模图平台、推荐与图、基于图的可解释性、风控与图、自然科学与图等8大论坛,将从多个视角,带你彻底了解图机器学习!

识别二维码,即可免费注册报名:

f867289160592c7ba566b7fca7483e4b.png

▌峰会日程

a4001e5438434eceae2b7866c197a60b.png

▌具体安排

本次峰会我们将继续涵盖图深度学习的广泛主题,即图神经网络,内容包括从方法论到应用,从基础到技术的新前沿。当然我们也关注到没法全面涵盖图神经网络这个快速增长的领域,及时应对新技术和应用的不断涌现。因此,我们组织这个峰会的目的是希望提供一个高水平的技术交流平台,让来自世界各地的高校的领域专家和各个头部公司的算法专家,来畅谈图神经网络在算法设计,实用的业务应用实践的经验和教训;同时让众多的从业者有机会学习,探讨,从而推动图神经网络在各个领域普遍推广,发挥更实际的产业价值。

下面我们一起来看看具体安排吧:

12526adf06ea16a685be8587094378ff.png

a1c6d6db845cc6e29b8630a2aba474b2.png

ac9538adaf902313a70153233baa0f30.png

3d70a2e058ad7d7d98918092fe8c67f8.png

f5d8ffc2cccb6569ba548bc8968f00c1.png

61d69402c1c5272ddfe93a6f12f35ece.png

8a8a298ff18ea0026d3b84603ed76f5f.png

32f2ba9bed9e0ff81cdd6928609028b8.png

▌如何参与?

db3193e5f93d36b801eb362f145f5ad3.png

识别二维码,免费报名

报名成功后,请按照提示,入群收看。

▌合作伙伴

主办方:DataFun、图与推荐

特别合作:亚马逊云科技、阿里云

合作媒体:深度学习与图网络

合作伙伴:腾讯大数据、快手、清华大学出版社、Datawhale、机器学习与推荐算法


OpenKG

OpenKG(中文开放知识图谱)旨在推动以中文为核心的知识图谱数据的开放、互联及众包,并促进知识图谱算法、工具及平台的开源开放。

b1d27f1cbc4326ef10cbada3772caf11.png

点击阅读原文,进入 OpenKG 网站。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/477673.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

专访邱锡鹏:人工智能开源社区的「先行者」

文 | 刘冰一、Echo源 | 极市平台邱锡鹏,复旦大学理学学士和博士。任职复旦大学计算机科学技术学院教授,博导。发表 CCF A/B 类论文 70 余篇,获得 ACL 2017 杰出论文奖(CCF A类)、CCL 2019 最佳论文奖。出版开源专著《神…

Spring Cloud Stream如何消费自己生产的消息

在上一篇《Spring Cloud Stream如何处理消息重复消费》中,我们通过消费组的配置解决了多实例部署情况下消息重复消费这一入门时的常见问题。本文将继续说说在另外一个被经常问到的问题:如果微服务生产的消息自己也想要消费一份,应该如何实现呢…

LeetCode 400. 第N个数字(数学)

1. 题目 在无限的整数序列 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …中找到第 n 个数字。 注意: n 是正数且在32为整形范围内 ( n < 2^31)。 示例 1: 输入: 3 输出: 3示例 2: 输入: 11 输出: 0 说明: 第11个数字在序列 1, 2, 3, 4, 5, 6, 7, 8, 9, 1--0--, 11, ... 里是0&a…

图谱实战 | 开源知识图谱融合工具剖析:Dedupe与OpenEA工具实现思想、关键环节与实操分析...

转载公众号 | 老刘说NLP实体对齐旨在发现不同知识图谱中的共指实体&#xff0c;如百度百科的360与Wikipedia中的360 qihoo。实体对齐是知识融合的重要任务&#xff0c;通过实体对齐集成多源知识图谱可以为下游任务提供更加全面的知识表示。实际上&#xff0c;实体对齐本质上就是…

算法岗SSP offer收割指南!

文 | 林小平源 | 知乎前序在本文开始以前&#xff0c;林小平首先需要声明的是这篇超详细面经并不是笔者本人的求职笔记&#xff0c;它是笔者学校隔壁实验室22届毕业学弟的面试心路历程和经验心得。由于笔者和这位学弟经常讨论校招求职和职业发展的问题&#xff0c;并且在秋招以…

Spring Cloud Stream如何处理消息重复消费

最近收到好几个类似的问题&#xff1a;使用Spring Cloud Stream操作RabbitMQ或Kafka的时候&#xff0c;出现消息重复消费的问题。通过沟通与排查下来主要还是用户对消费组的认识不够。其实&#xff0c;在之前的博文以及《Spring Cloud微服务实战》一书中都有提到关于消费组的概…

LeetCode 481. 神奇字符串(找规律)

1. 题目 神奇的字符串 S 只包含 ‘1’ 和 ‘2’&#xff0c;并遵守以下规则&#xff1a; 字符串 S 是神奇的&#xff0c;因为串联字符 ‘1’ 和 ‘2’ 的连续出现次数会生成字符串 S 本身。 字符串 S 的前几个元素如下&#xff1a;S “1221121221221121122 …” 如果我们将…

图谱实战 | ​鲍捷:知识图谱技术在金融领域的分析和应用

转载公众号 | DataFunSummit分享嘉宾&#xff1a;鲍捷博士 文因互联编辑整理&#xff1a;松烨 博瑜科技出品平台&#xff1a;DataFunTalk导读&#xff1a;知识图谱标准件已经全面赋能主流金融场景&#xff0c;经历了7年时间的发展&#xff0c;在金融监管、银行、资管、证券等领…

珍爱生命,远离大厂政治斗争

本文授权转载自公众号“算法圈的小破事”&#xff0c;点击以上卡片进行关注大家好&#xff0c;我是在互联网危险边缘疯狂试探的皮皮虾&#xff0c;今天跟大家分享一个关于大厂政治斗争的故事。有人可能觉得&#xff0c;政治斗争那都是大佬之间的事情&#xff0c;跟我们江湖虾米…

Spring Cloud Finchley版中Consul多实例注册的问题处理

由于Spring Cloud对Etcd的支持一直没能从孵化器中出来&#xff0c;所以目前来说大多用户还在使用Eureka和Consul&#xff0c;之前又因为Eureka 2.0不在开源的消息&#xff0c;外加一些博眼球的标题党媒体使得Eureka的用户有所减少&#xff0c;所以&#xff0c;相信在选择Spring…

论文浅尝 | Continual Learning for Named Entity Recognition

笔记整理&#xff1a;李淑怡&#xff0c;天津大学硕士动机在许多真实任务下&#xff0c;常常需要引入新的实体类型&#xff0c;因此需要重新训练命名实体识别模型。当因为存储或安全问题限制对原始数据的访问时&#xff0c;那么为新实体类型重新标注原始数据的成本将会是高昂的…

Allen AI提出MERLOT,视频理解领域新SOTA!

文 | Yimin_饭煲2021年&#xff0c;多模态领域大概是人工智能研究者们关注者最多的一个领域了。随着各种模态数据集的增长和算力的发展&#xff0c;研究者们开始不断地尝试在一个模型中融合来自各个模态的信息。而在多模态领域的研究中&#xff0c;和视频相关的任务被认为是最复…

基于HMM的中文词性标注 POSTagging

文章目录1. 词性标注1.1 概念1.2 任务1.3 预处理1.4 初步统计预览2. 最大概率模型2.1 训练2.2 预测2.3 结果评估2.4 结果可视化3. 二元隐马尔科夫BiHMM模型3.1 训练3.2 预测3.3 结果评估3.4 结果可视化4. 结果讨论思考本文的代码是在徐老师的代码基础上&#xff0c;自己加了些注…

图谱实战 | 58同城周超:基于招聘场景下的知识图谱构建及应用

转载公众号 | DataFunSummit分享嘉宾&#xff1a;周超 58同城 NLP资深算法工程师编辑整理&#xff1a;吴祺尧 加州大学圣地亚哥分校出品平台&#xff1a;DataFunTalk导读&#xff1a;知识图谱作为一种富信息工程&#xff0c;已经深入到各行各业中&#xff0c;也为产业效率的提升…

2022年薪百万赛道:高性能神经网络与AI芯片应用

随着大数据的发展&#xff0c;计算机芯片算力的提升&#xff0c;人工智能近两年迎来了新一轮的爆发。而人工智能实现超级算力的核心就是AI芯片。AI芯片也被称为人工智能加速器&#xff0c;即专门用于处理人工智能应用中的大量计算任务的模块。2020年我国人工智能芯片市场规模约…

API网关 Zuul1.0 和 2.0 我们该如何选择?

介绍 在今年5月中&#xff0c;Netflix终于开源了它的支持异步调用模式的Zuul网关2.0版本&#xff0c;真可谓千呼万唤始出来。从Netflix的官方博文[附录1]中&#xff0c;我们获得的信息也比较令人振奋&#xff1a; The Cloud Gateway team at Netflix runs and operates more t…

LeetCode 623. 在二叉树中增加一行(BFS/DFS)

文章目录1. 题目2. 解题2.1 BFS2.2 DFS1. 题目 给定一个二叉树&#xff0c;根节点为第1层&#xff0c;深度为 1。在其第 d 层追加一行值为 v 的节点。 添加规则&#xff1a;给定一个深度值 d &#xff08;正整数&#xff09;&#xff0c;针对深度为 d-1 层的每一非空节点 N&a…

论文浅尝 | KR-GCN: 知识感知推理的可解释推荐系统

论文作者&#xff1a;马婷&#xff0c;中国科学院信息工程研究所直博生动机抽取并利用知识图谱(KG)中的多跳关系路径可以提高推荐系统的性能&#xff0c;并提供可解释性。然而&#xff0c;现有的工作仍面临着两个主要的挑战&#xff1a;用户偏好的错误传播和模型的弱解释性。提…

吴恩达,确诊新冠阳性!

编 | 好困 袁榭源 | 新智元【导读】当代人工智能领域最权威的学者之一吴恩达&#xff0c;于2022年2月8日晨在自己推特上宣布新冠检测结果阳性&#xff0c;不过症状轻微。北京时间&#xff0c;2022年2月8日早上6点&#xff0c;吴恩达新冠病毒检测呈阳性。吴恩达表示&#xff0c;…

Spring Cloud Config采用Git存储时两种常用的配置策略

由于Spring Cloud Config默认采用了Git存储&#xff0c;相信很多团队在使用Spring Cloud的配置中心时也会采用这样的策略。即便大家都使用了Git存储&#xff0c;可能还有各种不同的配置方式&#xff0c;本文就来介绍一下两种常用的配置策略。 第一种&#xff1a;多个项目公用一…