coturn的负载均衡特性_高性能负载均衡

单服务器无论如何优化,无论采用多好的硬件,总会有一个性能天花板,当单服务器的性能无法满足业务需求时,就需要设计高性能集群来提升系统整体的处理性能。

高性能集群的本质很简单,通过增加更多的服务器来提升系统整体的计算能力。由于计算本身存在一个特点:同样的输入数据和逻辑,无论在哪台服务器上执行,都应该得到相同的输出。因此高性能集群设计的复杂度主要体现在任务分配这部分,需要设计合理的任务分配策略,将计算任务分配到多台服务器上执行。

高性能集群的复杂性主要体现在需要增加一个任务分配器,以及为任务选择一个合适的任务分配算法。对于任务分配器,现在更流行的通用叫法是“负载均衡器”。但这个名称有一定的误导性,会让人潜意识里认为任务分配的目的是要保持各个计算单元的负载达到均衡状态。而实际上任务分配并不只是考虑计算单元的负载均衡,不同的任务分配算法目标是不一样的,有的基于负载考虑,有的基于性能(吞吐量、响应时间)考虑,有的基于业务考虑。考虑到“负载均衡”已经成为了事实上的标准术语,这里我也用“负载均衡”来代替“任务分配”,但请你时刻记住,负载均衡不只是为了计算单元的负载达到均衡状态

负载均衡分类

常见的负载均衡系统包括3种:DNS负载均衡、硬件负载均衡和软件负载均衡。

DNS负载均衡

DNS是最简单也是最常见的负载均衡方式,一般用来实现地理级别的均衡。例如,北方的用户访问北京的机房,南方的用户访问深圳的机房。DNS负载均衡的本质是DNS解析同一个域名可以返回不同的IP地址。例如,同样是www.baidu.com,北方用户解析后获取的地址是61.135.165.224(这是北京机房的IP),南方用户解析后获取的地址是14.215.177.38(这是深圳机房的IP)。

下面是DNS负载均衡的简单示意图:

39b48010382391219d133394ade96c05.png

DNS负载均衡实现简单、成本低,但也存在粒度太粗、负载均衡算法少等缺点。

仔细分析一下优缺点,其优点有:

  • 简单、成本低:负载均衡工作交给DNS服务器处理,无须自己开发或者维护负载均衡设备。
  • 就近访问,提升访问速度:DNS解析时可以根据请求来源IP,解析成距离用户最近的服务器地址,可以加快访问速度,改善性能。

缺点有:

  • 更新不及时:DNS缓存的时间比较长,修改DNS配置后,由于缓存的原因,还是有很多用户会继续访问修改前的IP,这样的访问会失败,达不到负载均衡的目的,并且也影响用户正常使用业务。
  • 扩展性差:DNS负载均衡的控制权在域名商那里,无法根据业务特点针对其做更多的定制化功能和扩展特性。
  • 分配策略比较简单:DNS负载均衡支持的算法少;不能区分服务器的差异(不能根据系统与服务的状态来判断负载);也无法感知后端服务器的状态。

针对DNS负载均衡的一些缺点,对于时延和故障敏感的业务,有一些公司自己实现了HTTP-DNS的功能,即使用HTTP协议实现一个私有的DNS系统。这样的方案和通用的DNS优缺点正好相反。

硬件负载均衡

硬件负载均衡是通过单独的硬件设备来实现负载均衡功能,这类设备和路由器、交换机类似,可以理解为一个用于负载均衡的基础网络设备。目前业界典型的硬件负载均衡设备有两款:F5和A10。这类设备性能强劲、功能强大,但价格都不便宜,一般只有“土豪”公司才会考虑使用此类设备。普通业务量级的公司一是负担不起,二是业务量没那么大,用这些设备也是浪费。

硬件负载均衡的优点是:

  • 功能强大:全面支持各层级的负载均衡,支持全面的负载均衡算法,支持全局负载均衡。
  • 性能强大:对比一下,软件负载均衡支持到10万级并发已经很厉害了,硬件负载均衡可以支持100万以上的并发。
  • 稳定性高:商用硬件负载均衡,经过了良好的严格测试,经过大规模使用,稳定性高。
  • 支持安全防护:硬件均衡设备除具备负载均衡功能外,还具备防火墙、防DDoS攻击等安全功能。

硬件负载均衡的缺点是:

  • 价格昂贵:最普通的一台F5就是一台“马6”,好一点的就是“Q7”了。
  • 扩展能力差:硬件设备,可以根据业务进行配置,但无法进行扩展和定制。

软件负载均衡

软件负载均衡通过负载均衡软件来实现负载均衡功能,常见的有Nginx和LVS,其中Nginx是软件的7层负载均衡,LVS是Linux内核的4层负载均衡。4层和7层的区别就在于协议灵活性,Nginx支持HTTP、E-mail协议;而LVS是4层负载均衡,和协议无关,几乎所有应用都可以做,例如,聊天、数据库等。

软件和硬件的最主要区别就在于性能,硬件负载均衡性能远远高于软件负载均衡性能。Ngxin的性能是万级,一般的Linux服务器上装一个Nginx大概能到5万/秒;LVS的性能是十万级,据说可达到80万/秒;而F5性能是百万级,从200万/秒到800万/秒都有(数据来源网络,仅供参考,如需采用请根据实际业务场景进行性能测试)。当然,软件负载均衡的最大优势是便宜,一台普通的Linux服务器批发价大概就是1万元左右,相比F5的价格,那就是自行车和宝马的区别了。

除了使用开源的系统进行负载均衡,如果业务比较特殊,也可能基于开源系统进行定制(例如,Nginx插件),甚至进行自研。

下面是Nginx的负载均衡架构示意图:

0eb818122cd2a1e717059c09c86747f0.png

软件负载均衡的优点:

  • 简单:无论是部署还是维护都比较简单。
  • 便宜:只要买个Linux服务器,装上软件即可。
  • 灵活:4层和7层负载均衡可以根据业务进行选择;也可以根据业务进行比较方便的扩展,例如,可以通过Nginx的插件来实现业务的定制化功能。

其实下面的缺点都是和硬件负载均衡相比的,并不是说软件负载均衡没法用。

  • 性能一般:一个Nginx大约能支撑5万并发。
  • 功能没有硬件负载均衡那么强大。
  • 一般不具备防火墙和防DDoS攻击等安全功能。

负载均衡典型架构

前面我们介绍了3种常见的负载均衡机制:DNS负载均衡、硬件负载均衡、软件负载均衡,每种方式都有一些优缺点,但并不意味着在实际应用中只能基于它们的优缺点进行非此即彼的选择,反而是基于它们的优缺点进行组合使用。具体来说,组合的基本原则为:

  • DNS负载均衡用于实现地理级别的负载均衡;
  • 硬件负载均衡用于实现集群级别的负载均衡;
  • 软件负载均衡用于实现机器级别的负载均衡。

以一个假想的实例来说明一下这种组合方式,如下图所示。

73c4e07ba13af97f9b70bc098810379c.png

整个系统的负载均衡分为三层。

  • 地理级别负载均衡:www.xxx.com部署在北京、广州、上海三个机房,当用户访问时,DNS会根据用户的地理位置来决定返回哪个机房的IP,图中返回了广州机房的IP地址,这样用户就访问到广州机房了。
  • 集群级别负载均衡:广州机房的负载均衡用的是F5设备,F5收到用户请求后,进行集群级别的负载均衡,将用户请求发给3个本地集群中的一个,我们假设F5将用户请求发给了“广州集群2”。
  • 机器级别的负载均衡:广州集群2的负载均衡用的是Nginx,Nginx收到用户请求后,将用户请求发送给集群里面的某台服务器,服务器处理用户的业务请求并返回业务响应。

需要注意的是,上图只是一个示例,一般在大型业务场景下才会这样用,如果业务量没这么大,则没有必要严格照搬这套架构。例如,一个大学的论坛,完全可以不需要DNS负载均衡,也不需要F5设备,只需要用Nginx作为一个简单的负载均衡就足够了。

负载均衡算法

负载均衡算法数量较多,而且可以根据一些业务特性进行定制开发,抛开细节上的差异,根据算法期望达到的目的,大体上可以分为下面几类。

  • 任务平分类:负载均衡系统将收到的任务平均分配给服务器进行处理,这里的“平均”可以是绝对数量的平均,也可以是比例或者权重上的平均。
  • 负载均衡类:负载均衡系统根据服务器的负载来进行分配,这里的负载并不一定是通常意义上我们说的“CPU负载”,而是系统当前的压力,可以用CPU负载来衡量,也可以用连接数、I/O使用率、网卡吞吐量等来衡量系统的压力。
  • 性能最优类:负载均衡系统根据服务器的响应时间来进行任务分配,优先将新任务分配给响应最快的服务器。
  • Hash类:负载均衡系统根据任务中的某些关键信息进行Hash运算,将相同Hash值的请求分配到同一台服务器上。常见的有源地址Hash、目标地址Hash、session id hash、用户ID Hash等。

接下来介绍一下负载均衡算法以及它们的优缺点。

轮询

负载均衡系统收到请求后,按照顺序轮流分配到服务器上。

轮询是最简单的一个策略,无须关注服务器本身的状态,例如:

  • 某个服务器当前因为触发了程序bug进入了死循环导致CPU负载很高,负载均衡系统是不感知的,还是会继续将请求源源不断地发送给它。
  • 集群中有新的机器是32核的,老的机器是16核的,负载均衡系统也是不关注的,新老机器分配的任务数是一样的。

需要注意的是负载均衡系统无须关注“服务器本身状态”,这里的关键词是“本身”。也就是说,只要服务器在运行,运行状态是不关注的。但如果服务器直接宕机了,或者服务器和负载均衡系统断连了,这时负载均衡系统是能够感知的,也需要做出相应的处理。例如,将服务器从可分配服务器列表中删除,否则就会出现服务器已经宕机了,任务还不断地分配给它,这明显是不合理的。

总而言之,“简单”是轮询算法的优点,也是它的缺点。

加权轮询

负载均衡系统根据服务器权重进行任务分配,这里的权重一般是根据硬件配置进行静态配置的,采用动态的方式计算会更加契合业务,但复杂度也会更高。

加权轮询是轮询的一种特殊形式,其主要目的就是为了解决不同服务器处理能力有差异的问题。例如,集群中有新的机器是32核的,老的机器是16核的,那么理论上我们可以假设新机器的处理能力是老机器的2倍,负载均衡系统就可以按照2:1的比例分配更多的任务给新机器,从而充分利用新机器的性能。

加权轮询解决了轮询算法中无法根据服务器的配置差异进行任务分配的问题,但同样存在无法根据服务器的状态差异进行任务分配的问题。

负载最低优先

负载均衡系统将任务分配给当前负载最低的服务器,这里的负载根据不同的任务类型和业务场景,可以用不同的指标来衡量。例如:

  • LVS这种4层网络负载均衡设备,可以以“连接数”来判断服务器的状态,服务器连接数越大,表明服务器压力越大。
  • Nginx这种7层网络负载系统,可以以“HTTP请求数”来判断服务器状态(Nginx内置的负载均衡算法不支持这种方式,需要进行扩展)。
  • 如果我们自己开发负载均衡系统,可以根据业务特点来选择指标衡量系统压力。如果是CPU密集型,可以以“CPU负载”来衡量系统压力;如果是I/O密集型,可以以“I/O负载”来衡量系统压力。

负载最低优先的算法解决了轮询算法中无法感知服务器状态的问题,由此带来的代价是复杂度要增加很多。例如:

  • 最少连接数优先的算法要求负载均衡系统统计每个服务器当前建立的连接,其应用场景仅限于负载均衡接收的任何连接请求都会转发给服务器进行处理,否则如果负载均衡系统和服务器之间是固定的连接池方式,就不适合采取这种算法。例如,LVS可以采取这种算法进行负载均衡,而一个通过连接池的方式连接MySQL集群的负载均衡系统就不适合采取这种算法进行负载均衡。
  • CPU负载最低优先的算法要求负载均衡系统以某种方式收集每个服务器的CPU负载,而且要确定是以1分钟的负载为标准,还是以15分钟的负载为标准,不存在1分钟肯定比15分钟要好或者差。不同业务最优的时间间隔是不一样的,时间间隔太短容易造成频繁波动,时间间隔太长又可能造成峰值来临时响应缓慢。

负载最低优先算法基本上能够比较完美地解决轮询算法的缺点,因为采用这种算法后,负载均衡系统需要感知服务器当前的运行状态。当然,其代价是复杂度大幅上升。通俗来讲,轮询可能是5行代码就能实现的算法,而负载最低优先算法可能要1000行才能实现,甚至需要负载均衡系统和服务器都要开发代码。负载最低优先算法如果本身没有设计好,或者不适合业务的运行特点,算法本身就可能成为性能的瓶颈,或者引发很多莫名其妙的问题。所以负载最低优先算法虽然效果看起来很美好,但实际上真正应用的场景反而没有轮询(包括加权轮询)那么多。

性能最优类

负载最低优先类算法是站在服务器的角度来进行分配的,而性能最优优先类算法则是站在客户端的角度来进行分配的,优先将任务分配给处理速度最快的服务器,通过这种方式达到最快响应客户端的目的。

和负载最低优先类算法类似,性能最优优先类算法本质上也是感知了服务器的状态,只是通过响应时间这个外部标准来衡量服务器状态而已。因此性能最优优先类算法存在的问题和负载最低优先类算法类似,复杂度都很高,主要体现在:

  • 负载均衡系统需要收集和分析每个服务器每个任务的响应时间,在大量任务处理的场景下,这种收集和统计本身也会消耗较多的性能。
  • 为了减少这种统计上的消耗,可以采取采样的方式来统计,即不统计所有任务的响应时间,而是抽样统计部分任务的响应时间来估算整体任务的响应时间。采样统计虽然能够减少性能消耗,但使得复杂度进一步上升,因为要确定合适的采样率,采样率太低会导致结果不准确,采样率太高会导致性能消耗较大,找到合适的采样率也是一件复杂的事情。
  • 无论是全部统计还是采样统计,都需要选择合适的周期:是10秒内性能最优,还是1分钟内性能最优,还是5分钟内性能最优……没有放之四海而皆准的周期,需要根据实际业务进行判断和选择,这也是一件比较复杂的事情,甚至出现系统上线后需要不断地调优才能达到最优设计。

Hash类

负载均衡系统根据任务中的某些关键信息进行Hash运算,将相同Hash值的请求分配到同一台服务器上,这样做的目的主要是为了满足特定的业务需求。例如:

  • 源地址Hash将来源于同一个源IP地址的任务分配给同一个服务器进行处理,适合于存在事务、会话的业务。例如,当我们通过浏览器登录网上银行时,会生成一个会话信息,这个会话是临时的,关闭浏览器后就失效。网上银行后台无须持久化会话信息,只需要在某台服务器上临时保存这个会话就可以了,但需要保证用户在会话存在期间,每次都能访问到同一个服务器,这种业务场景就可以用源地址Hash来实现。
  • ID Hash将某个ID标识的业务分配到同一个服务器中进行处理,这里的ID一般是临时性数据的ID(如session id)。例如,上述的网上银行登录的例子,用session id hash同样可以实现同一个会话期间,用户每次都是访问到同一台服务器的目的。

作者:小马过河

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/473040.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LintCode MySQL 1928. 网课上课情况分析 I

文章目录1. 题目2. 解题1. 题目 online_class_situation 表展示了一些同学上网课的行为活动。 每行数据记录了一名同学在退出网课之前,当天使用同一台设备登录课程后听过的课程数目(可能是0个)。 写一条 SQL 语句,查询每位同学第…

python输入十个数输出最大值_python输入十个数如何输出最大值

python输入十个数输出最大值的方法:1、如果是整数的话,使用函数【a, b, c map(int, input().split())】;2、使用函数【Xinput().split()】。 相关免费学习推荐:python视频教程 python输入十个数输出最大值的方法: 第一…

LintCode MySQL 1921. 从不充值的玩家(where not in)

文章目录1. 题目2. 解题1. 题目 描述 A game database contains two tables, player table and recharge table. Write a SQL query to find all players who never recharge. 样例 https://www.lintcode.com/problem/players-who-never-recharge/description 2. 解题 -- …

古风一棵桃花树简笔画_广东有个现实版的“桃花源”,藏于秘境之中,最适合情侣来度假!...

上学时,初闻“芳草鲜美,落英缤纷”,并没有多大感触。直到后来长大离家,每每为生活奔波劳累时,为工作琐碎忧心费神时,才骤然明了当年五柳先生所描绘的“桃花源”该是多少人的脑中所想、心中所向……原以为这…

clob和blob是不是可以进行模糊查询_你知道什么是 MySQL 的模糊查询?

作者 | luanhz责编 | 郭芮本文对MySQL中几种常用的模糊搜索方式进行了介绍,包括LIKE通配符、RegExp正则匹配、内置字符串函数以及全文索引,最后给出了性能对比。引言MySQL根据不同的应用场景,支持的模糊搜索方式有多种,例如应用最…

LintCode 1917. 切割剩余金属

文章目录1. 题目2. 解题1. 题目 描述 金属棒工厂的厂长拥有 n 根多余的金属棒。 当地的一个承包商提出,只要所有的棒材具有相同的长度(用 saleLength 表示棒材的长度),就将金属棒工厂的剩余棒材全部购买。 厂长可以通过将每根棒…

太原理工电子信焦工程_电气工程及其自动化专业毕业后做什么工作?近几年就业和收入怎样...

本文内容为各大高校往届大学生真实的现身说法内容,但因为是往届,每年该专业的大学情况可能会发生略微变化,所以部分内容较今年,明年甚至以后几年,实际情况可能会略有不同但是对于本专业的相关信息还是非常有参考价值的…

怎么查看linux日志里请求量最高的url访问最多的_实用的Linux高级命令,开发运维都要懂!...

在运维的坑里摸爬滚打好几年了,我还记得我刚开始的时候,我只会使用一些简单的命令,写脚本的时候,也是要多简单有多简单,所以有时候写出来的脚本又长又臭。像一些高级点的命令,比如说 Xargs 命令、管道命令、…

ggplot2箱式图两两比较_第十九章_使用ggplot2进行高级绘图

介绍ggplot2包使用形状、颜色和尺寸来对多元数据进行可视化用刻面图比较各组自定义ggplot2图19.1 R中的四种图形系统基础gridlatticeggplot2(用的较多)gghub需要的R包ggpolt2gridExtra(可以拼图)car19.2 ggplot2介绍library(ggplot2)ggplot(datamtcars, aes(xwt, ympg)) geom_p…

LeetCode 1742. 盒子中小球的最大数量

文章目录1. 题目2. 解题1. 题目 你在一家生产小球的玩具厂工作,有 n 个小球,编号从 lowLimit 开始,到 highLimit 结束(包括 lowLimit 和 highLimit ,即 n highLimit - lowLimit 1)。 另有无限数量的盒子…

bash shell命令(1)

本文地址:http://www.cnblogs.com/archimedes/p/bash-shell1.html,转载请注明源地址。 ls命令 ls用来列出目录的内容,它是用户最常用的命令之一,ls命令的格式为: ls[选项][目录名或文件名] 选项的主要参数:…

LeetCode 1743. 从相邻元素对还原数组(拓扑排序)

文章目录1. 题目2. 解题1. 题目 存在一个由 n 个不同元素组成的整数数组 nums ,但你已经记不清具体内容。 好在你还记得 nums 中的每一对相邻元素。 给你一个二维整数数组 adjacentPairs ,大小为 n - 1 ,其中每个 adjacentPairs[i] [ui, v…

BP神经网络算法学习

BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是眼下应用最广泛的神经网络模型之中的一个。BP网络能学习和存贮大量的输入-输出模式映射关系&#xff…

无向图的深度优先遍历非递归_【数据结构图(一)】什么是图

一、什么是“图”(Graph) 表示“多对多”的关系包含一组顶点:通常用 V (Vertex) 表示顶点集合一组边:通常用 E (Edge) 表示边的集合无向边:(v, w) 有向边:不考虑重边和自回路二、抽象数据类型定义类型名称:图(Graph)数…

LeetCode 1744. 你能在你最喜欢的那天吃到你最喜欢的糖果吗?(前缀和)

文章目录1. 题目2. 解题1. 题目 给你一个下标从 0 开始的正整数数组 candiesCount ,其中 candiesCount[i] 表示你拥有的第 i 类糖果的数目。 同时给你一个二维数组 queries ,其中 queries[i] [favoriteTypei, favoriteDayi, dailyCapi] 。 你按照如下…

wdcp-apache开启KeepAlive提高响应速度

因为我们的网站,媒体文件,js文件,css文件等都在同一个服务器上,并且,我们网站有非常多的图片,所以当建立好tcp链接之后,不应该马上关闭连接,因为每建立一次连接还要进行dns解析&…

如何将网页保存为图片_网页账号密码该如何保存?

我们在使用浏览器浏览一些网页的时候,需要输入我们的账号密码才能登陆,以保证安全。但是有时候浏览网页,不小心关掉了,重新打开时又要重新输入密码,这样会显得很繁琐。那么有什么办法能让网页记住我们的账号密码吗&…

scala学习-类与对象

类  /  对象 【《快学Scala》笔记】 一、类 1、Scala中的类是公有可见性的,且多个类可以包含在同一个源文件中; 1 class Counter{ 2 private var value 0  //类成员变量必须初始化,否则报错 3 4 def increment(){ //类中的…

LeetCode 1745. 回文串分割 IV(区间DP)

文章目录1. 题目2. 解题1. 题目 给你一个字符串 s ,如果可以将它分割成三个 非空 回文子字符串,那么返回 true ,否则返回 false 。 当一个字符串正着读和反着读是一模一样的,就称其为 回文字符串 。 示例 1: 输入&a…

5000并发的qps是多少_高并发架构设计

点击蓝字,关注我们01概述高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。高并发一方面可以提高资源利用率,加快系统响应速度,但是同…