排序算法是《数据结构与算法》中最基本的算法之一。
排序算法可以分为内部排序和外部排序。
内部排序是数据记录在内存中进行排序。
而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。
常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。
用一张图概括:
关于时间复杂度:
- 平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。
- 线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序;
- O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序
- 线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。
关于稳定性:
- 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。
- 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。
1. 冒泡排序
1.1 算法步骤
- 比较相邻的元素。如果第一个比第二个大,就交换他们两个。
- 对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。
- 针对所有的元素重复以上的步骤,除了最后一个。
- 持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。
1.2 动画演示
1.3 参考代码
1// Java 代码实现 2public class BubbleSort implements IArraySort { 3 4 @Override 5 public int[] sort(int[] sourceArray) throws Exception { 6 // 对 arr 进行拷贝,不改变参数内容 7 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); 8 9 for (int i = 1; i < arr.length; i++) {10 // 设定一个标记,若为true,则表示此次循环没有进行交换,也就是待排序列已经有序,排序已经完成。11 boolean flag = true;1213 for (int j = 0; j < arr.length - i; j++) {14 if (arr[j] > arr[j + 1]) {15 int tmp = arr[j];16 arr[j] = arr[j + 1];17 arr[j + 1] = tmp;1819 flag = false;20 }21 }2223 if (flag) {24 break;25 }26 }27 return arr;28 }29}
2. 选择排序
2.1 算法步骤
- 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置
- 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
- 重复第二步,直到所有元素均排序完毕。
2.2 动画演示
2.3 参考代码
//Java 代码实现public class SelectionSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); // 总共要经过 N-1 轮比较 for (int i = 0; i < arr.length - 1; i++) { int min = i; // 每轮需要比较的次数 N-i for (int j = i + 1; j < arr.length; j++) { if (arr[j] < arr[min]) { // 记录目前能找到的最小值元素的下标 min = j; } } // 将找到的最小值和i位置所在的值进行交换 if (i != min) { int tmp = arr[i]; arr[i] = arr[min]; arr[min] = tmp; } } return arr; }}
3. 插入排序
3.1 算法步骤
- 将第一待排序序列第一个元素看做一个有序序列,把第二个元素到最后一个元素当成是未排序序列。
- 从头到尾依次扫描未排序序列,将扫描到的每个元素插入有序序列的适当位置。(如果待插入的元素与有序序列中的某个元素相等,则将待插入元素插入到相等元素的后面。)
3.2 动画演示
3.3 参考代码
//Java 代码实现 public class InsertSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); // 从下标为1的元素开始选择合适的位置插入,因为下标为0的只有一个元素,默认是有序的 for (int i = 1; i < arr.length; i++) { // 记录要插入的数据 int tmp = arr[i]; // 从已经排序的序列最右边的开始比较,找到比其小的数 int j = i; while (j > 0 && tmp < arr[j - 1]) { arr[j] = arr[j - 1]; j--; } // 存在比其小的数,插入 if (j != i) { arr[j] = tmp; } } return arr; }}
4. 希尔排序
4.1 算法步骤
- 选择一个增量序列 t1,t2,……,tk,其中 ti > tj, tk = 1;
- 按增量序列个数 k,对序列进行 k 趟排序;
- 每趟排序,根据对应的增量 ti,将待排序列分割成若干长度为 m 的子序列,分别对各子表进行直接插入排序。仅增量因子为 1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
4.2 动画演示
4.3 参考代码
//Java 代码实现 public class ShellSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int gap = 1; while (gap < arr.length) { gap = gap * 3 + 1; } while (gap > 0) { for (int i = gap; i < arr.length; i++) { int tmp = arr[i]; int j = i - gap; while (j >= 0 && arr[j] > tmp) { arr[j + gap] = arr[j]; j -= gap; } arr[j + gap] = tmp; } gap = (int) Math.floor(gap / 3); } return arr; }}
5. 归并排序
5.1 算法步骤
- 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;
- 设定两个指针,最初位置分别为两个已经排序序列的起始位置;
- 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;
- 重复步骤 3 直到某一指针达到序列尾;
- 将另一序列剩下的所有元素直接复制到合并序列尾。
5.2 动画演示
5.3 参考代码
public class MergeSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); if (arr.length < 2) { return arr; } int middle = (int) Math.floor(arr.length / 2); int[] left = Arrays.copyOfRange(arr, 0, middle); int[] right = Arrays.copyOfRange(arr, middle, arr.length); return merge(sort(left), sort(right)); } protected int[] merge(int[] left, int[] right) { int[] result = new int[left.length + right.length]; int i = 0; while (left.length > 0 && right.length > 0) { if (left[0] <= right[0]) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } else { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } } while (left.length > 0) { result[i++] = left[0]; left = Arrays.copyOfRange(left, 1, left.length); } while (right.length > 0) { result[i++] = right[0]; right = Arrays.copyOfRange(right, 1, right.length); } return result; }}
6. 快速排序
6.1 算法步骤
- 从数列中挑出一个元素,称为 “基准”(pivot);
- 重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边)。在这个分区退出之后,该基准就处于数列的中间位置。这个称为分区(partition)操作;
- 递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序;
6.2 动画演示
6.3 参考代码
//Java 代码实现 public class QuickSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); return quickSort(arr, 0, arr.length - 1); } private int[] quickSort(int[] arr, int left, int right) { if (left < right) { int partitionIndex = partition(arr, left, right); quickSort(arr, left, partitionIndex - 1); quickSort(arr, partitionIndex + 1, right); } return arr; } private int partition(int[] arr, int left, int right) { // 设定基准值(pivot) int pivot = left; int index = pivot + 1; for (int i = index; i <= right; i++) { if (arr[i] < arr[pivot]) { swap(arr, i, index); index++; } } swap(arr, pivot, index - 1); return index - 1; } private void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; }}
7. 堆排序
7.1 算法步骤
- 创建一个堆 H[0……n-1];
- 把堆首(最大值)和堆尾互换;
- 把堆的尺寸缩小 1,并调用 shift_down(0),目的是把新的数组顶端数据调整到相应位置;
- 重复步骤 2,直到堆的尺寸为 1。
7.2 动画演示
7.3 参考代码
//Java 代码实现 public class HeapSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int len = arr.length; buildMaxHeap(arr, len); for (int i = len - 1; i > 0; i--) { swap(arr, 0, i); len--; heapify(arr, 0, len); } return arr; } private void buildMaxHeap(int[] arr, int len) { for (int i = (int) Math.floor(len / 2); i >= 0; i--) { heapify(arr, i, len); } } private void heapify(int[] arr, int i, int len) { int left = 2 * i + 1; int right = 2 * i + 2; int largest = i; if (left < len && arr[left] > arr[largest]) { largest = left; } if (right < len && arr[right] > arr[largest]) { largest = right; } if (largest != i) { swap(arr, i, largest); heapify(arr, largest, len); } } private void swap(int[] arr, int i, int j) { int temp = arr[i]; arr[i] = arr[j]; arr[j] = temp; }}
8. 计数排序
8.1 算法步骤
- 花O(n)的时间扫描一下整个序列 A,获取最小值 min 和最大值 max
- 开辟一块新的空间创建新的数组 B,长度为 ( max – min + 1)
- 数组 B 中 index 的元素记录的值是 A 中某元素出现的次数
- 最后输出目标整数序列,具体的逻辑是遍历数组 B,输出相应元素以及对应的个数
8.2 动画演示
8.3 参考代码
//Java 代码实现 public class CountingSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int maxValue = getMaxValue(arr); return countingSort(arr, maxValue); } private int[] countingSort(int[] arr, int maxValue) { int bucketLen = maxValue + 1; int[] bucket = new int[bucketLen]; for (int value : arr) { bucket[value]++; } int sortedIndex = 0; for (int j = 0; j < bucketLen; j++) { while (bucket[j] > 0) { arr[sortedIndex++] = j; bucket[j]--; } } return arr; } private int getMaxValue(int[] arr) { int maxValue = arr[0]; for (int value : arr) { if (maxValue < value) { maxValue = value; } } return maxValue; }}. 桶排序
9.1 算法步骤
- 设置固定数量的空桶。
- 把数据放到对应的桶中。
- 对每个不为空的桶中数据进行排序。
- 拼接不为空的桶中数据,得到结果
9.2 动画演示
9.3 参考代码
//Java 代码实现 public class BucketSort implements IArraySort { private static final InsertSort insertSort = new InsertSort(); @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); return bucketSort(arr, 5); } private int[] bucketSort(int[] arr, int bucketSize) throws Exception { if (arr.length == 0) { return arr; } int minValue = arr[0]; int maxValue = arr[0]; for (int value : arr) { if (value < minValue) { minValue = value; } else if (value > maxValue) { maxValue = value; } } int bucketCount = (int) Math.floor((maxValue - minValue) / bucketSize) + 1; int[][] buckets = new int[bucketCount][0]; // 利用映射函数将数据分配到各个桶中 for (int i = 0; i < arr.length; i++) { int index = (int) Math.floor((arr[i] - minValue) / bucketSize); buckets[index] = arrAppend(buckets[index], arr[i]); } int arrIndex = 0; for (int[] bucket : buckets) { if (bucket.length <= 0) { continue; } // 对每个桶进行排序,这里使用了插入排序 bucket = insertSort.sort(bucket); for (int value : bucket) { arr[arrIndex++] = value; } } return arr; } /** * 自动扩容,并保存数据 * * @param arr * @param value */ private int[] arrAppend(int[] arr, int value) { arr = Arrays.copyOf(arr, arr.length + 1); arr[arr.length - 1] = value; return arr; }}
10. 基数排序
10.1 算法步骤
- 将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零
- 从最低位开始,依次进行一次排序
- 从最低位排序一直到最高位排序完成以后, 数列就变成一个有序序列
10.2 动画演示
10.3 参考代码
//Java 代码实现 public class RadixSort implements IArraySort { @Override public int[] sort(int[] sourceArray) throws Exception { // 对 arr 进行拷贝,不改变参数内容 int[] arr = Arrays.copyOf(sourceArray, sourceArray.length); int maxDigit = getMaxDigit(arr); return radixSort(arr, maxDigit); } /** * 获取最高位数 */ private int getMaxDigit(int[] arr) { int maxValue = getMaxValue(arr); return getNumLenght(maxValue); } private int getMaxValue(int[] arr) { int maxValue = arr[0]; for (int value : arr) { if (maxValue < value) { maxValue = value; } } return maxValue; } protected int getNumLenght(long num) { if (num == 0) { return 1; } int lenght = 0; for (long temp = num; temp != 0; temp /= 10) { lenght++; } return lenght; } private int[] radixSort(int[] arr, int maxDigit) { int mod = 10; int dev = 1; for (int i = 0; i < maxDigit; i++, dev *= 10, mod *= 10) { // 考虑负数的情况,这里扩展一倍队列数,其中 [0-9]对应负数,[10-19]对应正数 (bucket + 10) int[][] counter = new int[mod * 2][0]; for (int j = 0; j < arr.length; j++) { int bucket = ((arr[j] % mod) / dev) + mod; counter[bucket] = arrayAppend(counter[bucket], arr[j]); } int pos = 0; for (int[] bucket : counter) { for (int value : bucket) { arr[pos++] = value; } } } return arr; } private int[] arrayAppend(int[] arr, int value) { arr = Arrays.copyOf(arr, arr.length + 1); arr[arr.length - 1] = value; return arr; }}
转载