netty(一):NIO——处理消息边界

处理消息边界

为什么要处理边界

因为会存在半包和粘包的问题

1.客户端和服务端约定一个固定长度

  • 优点:简单

  • 缺点:可能造成浪费

2.客户端与服务端约定一个固定分割符

*缺点 效率低

3.先发送长度,再发送数据

TLV格式: type类型,length长度,Value数据,类型和长度已知的情况下,就可以方便获取消息大小

http1.1是TLV格式
http2.0是LTV格式

4.自动扩容解决消息边界问题

在这里插入图片描述

第一次read事件未能读完全部的输入,那么会产生第二个读事件,那么在第一次读的时候进行扩容,
并复制之前的内容至新的buffer中,
在第二个读事件触发以后使用扩容后的buffer,读取剩余的数据

buffer应当和各自的channel绑定,如何绑定,需要用到附件attachment,
attachment需要在注册时放到selectionKey中。

// 绑定附件
SelectionKey scKey = channel.register(selector,0,byteBuffer);// 获取附件
scKey.attachment();// 指定新的附件(覆盖附件)
scKey.attach(bytebuffer);

示例代码:

package com.ysf;import java.io.IOException;
import java.net.InetSocketAddress;
import java.nio.ByteBuffer;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.util.Iterator;public class BorderSelectorServer {/*** 读取到 '\n'时打印* @param byteBuffer 缓冲字节*/public static void handle(ByteBuffer byteBuffer) {byteBuffer.flip();for (int i = 0; i < byteBuffer.limit(); i++) {if (byteBuffer.get(i) == '\n') {int length = i + 1 - byteBuffer.position();ByteBuffer allocate = ByteBuffer.allocate(length);for (int j=0;j<length;j++){allocate.put(byteBuffer.get());}allocate.flip();System.out.println(Charset.defaultCharset().decode(allocate));}}byteBuffer.compact();}public static void main(String[] args) throws IOException {// 声明一个选择器Selector selector = Selector.open();// 声明一个serverServerSocketChannel ssc = ServerSocketChannel.open();ssc.bind(new InetSocketAddress(11027));ssc.configureBlocking(false);// 注册这个server到selectorSelectionKey sscKey = ssc.register(selector, 0, null);// 添加sscKey关心的事件,因为是serverChannel,所以应当关心accept事件sscKey.interestOps(SelectionKey.OP_ACCEPT);while (true) {selector.select();Iterator<SelectionKey> iterator = selector.selectedKeys().iterator();while (iterator.hasNext()) {SelectionKey key = iterator.next();iterator.remove();if (key.isAcceptable()) {ServerSocketChannel serverChannel = (ServerSocketChannel) key.channel();SocketChannel socketChannel = serverChannel.accept();socketChannel.configureBlocking(false);// 声明一个buffer缓冲区和socketChannel绑定ByteBuffer byteBuffer = ByteBuffer.allocate(16);SelectionKey scKey = socketChannel.register(selector, 0, byteBuffer);scKey.interestOps(SelectionKey.OP_READ);} else if (key.isReadable()) {// 当客户端异常断开链接是需要处理IOExceptiontry {SocketChannel channel = (SocketChannel) key.channel();ByteBuffer byteBuffer = (ByteBuffer) key.attachment();int read = channel.read(byteBuffer);if (read == -1) {// 客户端close()了key.cancel();}else{// 调用处理逻辑handle(byteBuffer);if (byteBuffer.position() == byteBuffer.limit()){// buffer满了,需要扩容ByteBuffer bufferEx = ByteBuffer.allocate(byteBuffer.capacity() * 2);byteBuffer.flip();bufferEx.put(byteBuffer);key.attach(bufferEx);}}}catch (IOException e){
//                        e.printStackTrace();key.cancel();}}}}}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/46749.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【ROS】参数服务器--理论模型与参数操作(C++)

一、概念介绍 参数服务器在ROS中主要用于实现不同节点之间的数据共享。参数服务器相当于是独立于所有节点的一个公共容器&#xff0c;可以将数据存储在该容器中&#xff0c;被不同的节点调用&#xff0c;当然不同的节点也可以往其中存储数据。 作用&#xff1a;存储一些多节点…

C语言:库函数atoi及其模拟实现

atoi&#xff1a; atof是C语言标准库中的一个函数&#xff0c;用于将字符串转换为对应的浮点数/整形数。 函数接受一个参数str&#xff0c;该参数是一个指向以null结尾的字符串的指针。atof函数会尝试将这个字符串转换为一个浮点数&#xff0c;并返回转换后的结果。 要注意的是…

飞机打方块(五)游戏音乐

一、新建节点 1.在Start场景中新建Music节点&#xff0c;绑定canvas 2.在Game场景中新建Music节点 3.新建节点 4.新建Music脚本&#xff0c;绑定Canvas Music.ts const { ccclass, property } cc._decorator;ccclass export default class NewClass extends cc.Component {p…

*args无疑是解决函数重载的一大创新利器--我用可变数量参数解决了函数重载问题

需求分析 最近遇到这样一个需求&#xff1a;根据用户传递的不同参数数量执行不同的功能。我这几天一直在思考这个问题&#xff1a;如何根据参数数量去执行不同的功能&#xff0c;最初的设想是把不需要的参数设置为NONE或者""再或者" "(后两者引号均表示传空…

Flink 流式读写文件、文件夹

文章目录 一、flink 流式读取文件夹、文件二、flink 写入文件系统——StreamFileSink三、查看完整代码 一、flink 流式读取文件夹、文件 Apache Flink针对文件系统实现了一个可重置的source连接器&#xff0c;将文件看作流来读取数据。如下面的例子所示&#xff1a; StreamExe…

【无标题】QT应用编程: QtCreator配置Git版本控制(码云)

QT应用编程: QtCreator配置Git版本控制(码云) 感谢&#xff1a;DS小龙哥的文章&#xff0c;这篇主要参考小龙哥的内容。 https://cloud.tencent.com/developer/article/1930531?areaSource102001.15&traceIdW2mKALltGu5f8-HOI8fsN Qt Creater 自带了git支持。但是一直没…

软件测试学术顶会——ISSTA 2023 论文(网络安全方向)清单、摘要与总结

总结 本次会议涵盖的安全研究主题广泛,包括源代码分析、二进制代码分析、恶意软件检测、漏洞检测、模糊测试、程序验证等。一些热门的研究方向包括:基于机器学习的漏洞检测、大型语言模型在软件安全中的应用、区块链智能合约安全分析。这些方向都在最近几年持续发展。一些较冷门…

【C++】IO流

C语言的输入和输出 C语言中我们用到的最频繁的输入输出方式就是scanf ()与printf()。 scanf(): 从标准输入设备(键 盘)读取数据&#xff0c;并将值存放在变量中。printf(): 将指定的文字/字符串输出到标准输出设备(屏幕)。 注意宽度输出和精度输出控制。C语言借助了相应的缓冲区…

postgresql 分组

postgresql 数据汇总 分组汇总聚合函数注意 总结 分组统计总结 高级分组总结 分组汇总 聚合函数 聚合函数&#xff08;aggregate function&#xff09;针对一组数据行进行运算&#xff0c;并且返回单个结果。PostgreSQL 支持以下常见的聚合函数&#xff1a; • AVG - 计算一…

在思科(Cisco)路由器中使用 SNMP

什么是SNMP SNMP&#xff0c;称为简单网络管理协议&#xff0c;被发现可以解决具有复杂网络设备的复杂网络环境&#xff0c;SNMP 使用标准化协议来查询网络上的设备&#xff0c;为网络管理员提供保持网络环境稳定和远离停机所需的重要信息。 为什么要在思科设备中启用SNMP S…

基于springboot+vue的论坛系统(前后端分离)

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战 主要内容&#xff1a;毕业设计(Javaweb项目|小程序等)、简历模板、学习资料、面试题库、技术咨询 文末联系获取 项目介绍…

机器学习赋能乳腺癌预测:如何使用贝叶斯分级进行精确诊断?

一、引言 乳腺癌是女性最常见的恶性肿瘤之一&#xff0c;也会发生在男性身上。每年全球有数百万人被诊断出乳腺癌&#xff0c;对患者的生活和健康造成了巨大的影响。早期的乳腺癌检测和准确的诊断对于提高治疗的成功率至关重要。然而&#xff0c;乳腺癌的早期诊断面临着许多挑战…

国际刑警组织逮捕 14 名涉嫌盗窃 4000 万美元的网络罪犯

Bleeping Computer 网站披露&#xff0c;4 月份&#xff0c;国际刑警组织发动了一起为期四个月&#xff0c;横跨 25 个非洲国家的执法行动 “Africa Cyber Surge II”&#xff0c;共逮捕 14 名网络犯罪嫌疑人&#xff0c;摧毁 20000 多个从事勒索、网络钓鱼、BEC 和在线诈骗的犯…

ubuntu20.04共享文件夹—— /mnt/hgfs里没有共享文件夹

参考文章&#xff1a;https://blog.csdn.net/Edwinwzy/article/details/129580636 虚拟机启用共享文件夹后&#xff0c;/mnt/hgfs下面为空&#xff0c;使用 vmware-hgfsclient 查看设置的共享文件夹名字也是为空。 解决方法&#xff1a; 1. 重新安装vmware tools. 在菜单…

【高光谱图像的去噪算法】通过全变异最小化对受激拉曼光谱图像进行去噪研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

nginx防盗链

防盗链介绍 通过二次访问&#xff0c;请求头中带有referer&#xff0c;的方式不允许访问静态资源。 我们只希望用户通过反向代理服务器才可以拿到我们的静态资源&#xff0c;不希望别的服务器通过二次请求拿到我们的静态资源。 盗链是指在自己的页面上展示一些并不在自己服务…

badgerdb里面的事务

事务的ACID A 原子性&#xff08;Atomicity&#xff09; 多步骤操作&#xff0c;只能是两种状态&#xff0c;要么所有的步骤都成功执行&#xff0c;要么所有的步骤都不执行&#xff0c;举例说明就是小明向小红转账30元的场景&#xff0c;拆分成两个步骤&#xff0c;步骤1&#…

【Windows系统编程】06.HotFixHook与进程通信(详解HotFixHook)

上一讲讲到的InlineHook&#xff0c;每次Hook的时候&#xff0c;都要读写两次内存&#xff08;先Hook&#xff0c;再还原&#xff09;这种Hook方式&#xff0c;性能比较低&#xff0c;今天我们讲的这种Hook方式&#xff0c;可以说是InlineHook的升级版本 HotFix&#xff08;热…

公众号11周年,终于向公域流量打开了大门

是的&#xff0c;在这篇文章要发布之前&#xff0c;看了下日期&#xff0c;才惊觉明天就是公众号11周年了。 时间真的过得飞快&#xff0c;总觉得10周年刚过不久。 已经11年的公众号&#xff0c;或许少了很多关注&#xff0c;或许很多目光也被视频号夺去了。 但让人欣喜的是…

前馈神经网络dropout实例

直接看代码。 &#xff08;一&#xff09;手动实现 import torch import torch.nn as nn import numpy as np import torchvision import torchvision.transforms as transforms import matplotlib.pyplot as plt#下载MNIST手写数据集 mnist_train torchvision.datasets.MN…