单片机——多功能电子钟
宗旨:技术的学习是有限的,分享的精神是无限的。
实现的功能有:走 时、校时、闹钟、温度、遥控这几个功能。要想实现这几个功能,其中走时所需要的就是时 钟芯片,即 DS1302;时间需要显示给人看,就需要显示器件,我们用到了点阵、数码管、 独立 LED、液晶;再来看校时,校时需要输入器件。
注重模块化思想:
// 工程配置头文件config.h:
#ifndef _CONFIG_H
#define _CONFIG_H/* 通用头文件 */
#include <reg52.h>
#include <intrins.h>/* 数据类型定义 */
typedef signed char int8; // 8位有符号整型数
typedef signed int int16; //16位有符号整型数
typedef signed long int32; //32位有符号整型数
typedef unsigned char uint8; // 8位无符号整型数
typedef unsigned int uint16; //16位无符号整型数
typedef unsigned long uint32; //32位无符号整型数/* 全局运行参数定义 */
#define SYS_MCLK (11059200/12) //系统主时钟频率,即振荡器频率÷12/* IO引脚分配定义 */
sbit KEY_IN_1 = P2 ^ 4; //矩阵按键的扫描输入引脚1
sbit KEY_IN_2 = P2 ^ 5; //矩阵按键的扫描输入引脚2
sbit KEY_IN_3 = P2 ^ 6; //矩阵按键的扫描输入引脚3
sbit KEY_IN_4 = P2 ^ 7; //矩阵按键的扫描输入引脚4
sbit KEY_OUT_1 = P2 ^ 3; //矩阵按键的扫描输出引脚1
sbit KEY_OUT_2 = P2 ^ 2; //矩阵按键的扫描输出引脚2
sbit KEY_OUT_3 = P2 ^ 1; //矩阵按键的扫描输出引脚3
sbit KEY_OUT_4 = P2 ^ 0; //矩阵按键的扫描输出引脚4sbit ADDR0 = P1 ^ 0; //LED位选译码地址引脚0
sbit ADDR1 = P1 ^ 1; //LED位选译码地址引脚1
sbit ADDR2 = P1 ^ 2; //LED位选译码地址引脚2
sbit ADDR3 = P1 ^ 3; //LED位选译码地址引脚3
sbit ENLED = P1 ^ 4; //LED显示部件的总使能引脚#define LCD1602_DB P0 //1602液晶数据端口
sbit LCD1602_RS = P1 ^ 0; //1602液晶指令/数据选择引脚
sbit LCD1602_RW = P1 ^ 1; //1602液晶读写引脚
sbit LCD1602_E = P1 ^ 5; //1602液晶使能引脚sbit DS1302_CE = P1 ^ 7; //DS1302片选引脚
sbit DS1302_CK = P3 ^ 5; //DS1302通信时钟引脚
sbit DS1302_IO = P3 ^ 4; //DS1302通信数据引脚sbit I2C_SCL = P3 ^ 7; //I2C总线时钟引脚
sbit I2C_SDA = P3 ^ 6; //I2C总线数据引脚sbit BUZZER = P1 ^ 6; //蜂鸣器控制引脚sbit IO_18B20 = P3 ^ 2; //DS18B20通信引脚sbit IR_INPUT = P3 ^ 3; //红外接收引脚#endif /* _CONFIG_H */<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);"> </span>
// 头文件Lcd1602.h:
#ifndef _LCD1602_H
#define _LCD1602_H#ifndef _LCD1602_C#endifvoid InitLcd1602();
void LcdClearScreen();
void LcdOpenCursor();
void LcdCloseCursor();
void LcdSetCursor(uint8 x, uint8 y);
void LcdShowStr(uint8 x, uint8 y, uint8*str);
void LcdShowChar(uint8 x, uint8 y, uint8chr);#endif /* _LCD1602_H */// 实时时钟芯片DS1302驱动模块的头文件DS1302.h:
#ifndef _DS1302_H
#define _DS1302_Hstruct sTime //日期时间结构
{uint16 year; //年uint8 mon; //月uint8 day; //日uint8 hour; //时uint8 min; //分uint8 sec; //秒uint8 week; //星期
};#ifndef _DS1302_C#endifvoid InitDS1302();
void GetRealTime(struct sTime *time);
void SetRealTime(struct sTime *time);#endif /* _DS1302_H */
// 温度传感器DS18B20驱动模块的头文件
#ifndef _DS18B20_H
#define _DS18B20_H#ifndef _DS18B20_C#endifbit Start18B20();
bit Get18B20Temp(int16 *temp);#endif /* _DS18B20_H */
// 多功能电子钟主要功能文件的头文件Time.h:
#ifndef _TIME_H
#define _TIME_H#ifndef _TIME_C#endif
void RefreshTime();
void RefreshDate(uint8 ops);
void RefreshAlarm();
void AlarmMonitor();
void KeyAction(uint8 keycode);#endif /* _TIME_H */
// 4*4矩阵按键驱动模块的头文件keyboard.h:
#ifndef _KEY_BOARD_H
#define _KEY_BOARD_H#ifndef _KEY_BOARD_C#endifvoid KeyScan();
void KeyDriver();#endif /* _KEY_BOARD_H */<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);"> </span>
// 点阵LED、数码管、独立LED和无源蜂鸣器的驱动模块头文件:LedBuzzer.h:
#ifndef _LED_BUZZER_H
#define _LED_BUZZER_Hstruct sLedBuff //LED显示缓冲区结构
{uint8 array[8]; //点阵缓冲区uint8 number[6]; //数码管缓冲区uint8 alone; //独立LED缓冲区
};#ifndef _LED_BUZZER_C
extern bit staBuzzer;
extern struct sLedBuff ledBuff;
#endifvoid InitLed();
void FlowingLight();
void ShowLedNumber(uint8 index, uint8num, uint8 point);
void ShowLedArray(uint8 *ptr);#endif /* _LED_BUZZER_H */<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);"> </span>
// 主文件的头文件main.h:
#ifndef _MAIN_H
#define _MAIN_Henum eStaSystem //系统运行状态枚举
{E_NORMAL, E_SET_TIME, E_SET_ALARM
};#ifndef _MAIN_C
extern enum eStaSystem staSystem;
#endifvoid RefreshTemp(uint8 ops);
void ConfigTimer0(uint16 ms);#endif /* _MAIN_H */
//=============================================================================
// Lcd1602.c:
#define _LCD1602_C
#include "config.h"
#include "Lcd1602.h"uint8 tmpP0; //暂存P0口的值
bit tmpADDR0; //暂存LED位选译码地址0的值
bit tmpADDR1; //暂存LED位选译码地址1的值/* 暂停LED动态扫描,暂存相关引脚的值 */
void LedScanPause()
{ENLED = 1;tmpP0 = P0;tmpADDR0 = ADDR0;tmpADDR1 = ADDR1;
}
/* 恢复LED动态扫描,恢复相关引脚的值 */
void LedScanContinue()
{ADDR0 = tmpADDR0;ADDR1 = tmpADDR1;P0 = tmpP0;ENLED = 0;
}
/* 等待液晶准备好 */
void LcdWaitReady()
{uint8 sta;LCD1602_DB = 0xFF;LCD1602_RS = 0;LCD1602_RW = 1;do{LCD1602_E = 1;sta = LCD1602_DB; //读取状态字LCD1602_E = 0;}while (sta & 0x80); //bit7等于1表示液晶正忙,重复检测直到其等于0为止
}
/* 向LCD1602液晶写入一字节命令,cmd-待写入命令值 */
void LcdWriteCmd(uint8 cmd)
{LedScanPause();LcdWaitReady();LCD1602_RS = 0;LCD1602_RW = 0;LCD1602_DB = cmd;LCD1602_E = 1;LCD1602_E = 0;LedScanContinue();
}
/* 向LCD1602液晶写入一字节数据,dat-待写入数据值 */
void LcdWriteDat(uint8 dat)
{LedScanPause();LcdWaitReady();LCD1602_RS = 1;LCD1602_RW = 0;LCD1602_DB = dat;LCD1602_E = 1;LCD1602_E = 0;LedScanContinue();
}
/* 清屏 */
void LcdClearScreen()
{LcdWriteCmd(0x01);
}
/* 打开光标的闪烁效果 */
void LcdOpenCursor()
{LcdWriteCmd(0x0F);
}
/* 关闭光标显示 */
void LcdCloseCursor()
{LcdWriteCmd(0x0C);
}
/* 设置显示RAM起始地址,亦即光标位置,(x,y)-对应屏幕上的字符坐标 */
void LcdSetCursor(uint8 x, uint8 y)
{uint8 addr;if (y == 0) //由输入的屏幕坐标计算显示RAM的地址{addr = 0x00 + x; //第一行字符地址从0x00起始}else{addr = 0x40 + x; //第二行字符地址从0x40起始}LcdWriteCmd(addr | 0x80); //设置RAM地址
}
/* 在液晶上显示字符串,(x,y)-对应屏幕上的起始坐标,str-字符串指针 */
void LcdShowStr(uint8 x, uint8 y, uint8*str)
{LcdSetCursor(x, y); //设置起始地址while (*str != '\0') //连续写入字符串数据,直到检测到结束符{LcdWriteDat(*str++);}
}
/* 在液晶上显示一个字符,(x,y)-对应屏幕上的起始坐标,chr-字符ASCII码 */
void LcdShowChar(uint8 x, uint8 y, uint8chr)
{LcdSetCursor(x, y); //设置起始地址LcdWriteDat(chr); //写入ASCII字符
}
/* 初始化1602液晶 */
void InitLcd1602()
{LcdWriteCmd(0x38); //16*2显示,5*7点阵,8位数据接口LcdWriteCmd(0x0C); //显示器开,光标关闭LcdWriteCmd(0x06); //文字不动,地址自动+1LcdWriteCmd(0x01); //清屏
}<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);"> </span>
// 实时时钟芯片DS1302驱动模块DS1302.c:
#define _DS1302_C
#include "config.h"
#include "DS1302.h"/* 发送一个字节到DS1302通信总线上 */
void DS1302ByteWrite(uint8 dat)
{uint8 mask;for (mask = 0x01; mask != 0; mask <<= 1) //低位在前,逐位移出{if ((mask & dat) != 0) //首先输出该位数据{DS1302_IO = 1;}else{DS1302_IO = 0;}DS1302_CK = 1; //然后拉高时钟DS1302_CK = 0; //再拉低时钟,完成一个位的操作}DS1302_IO = 1; //最后确保释放IO引脚
}
/* 由DS1302通信总线上读取一个字节 */
uint8 DS1302ByteRead()
{uint8 mask;uint8 dat = 0;for (mask = 0x01; mask != 0; mask <<= 1) //低位在前,逐位读取{if (DS1302_IO != 0) //首先读取此时的IO引脚,并设置dat中的对应位{dat |= mask;}DS1302_CK = 1; //然后拉高时钟DS1302_CK = 0; //再拉低时钟,完成一个位的操作}return dat; //最后返回读到的字节数据
}
/* 用单次写操作向某一寄存器写入一个字节,reg-寄存器地址,dat-待写入字节 */
void DS1302SingleWrite(uint8 reg, uint8dat)
{DS1302_CE = 1; //使能片选信号DS1302ByteWrite((reg << 1) | 0x80); //发送写寄存器指令DS1302ByteWrite(dat); //写入字节数据DS1302_CE = 0; //除能片选信号
}
/* 用单次读操作从某一寄存器读取一个字节,reg-寄存器地址,返回值-读到的字节 */
uint8 DS1302SingleRead(uint8 reg)
{uint8 dat;DS1302_CE = 1; //使能片选信号DS1302ByteWrite((reg << 1) | 0x81); //发送读寄存器指令dat = DS1302ByteRead(); //读取字节数据DS1302_CE = 0; //除能片选信号return dat;
}
/* 用突发模式连续写入8个寄存器数据,dat-待写入数据指针 */
void DS1302BurstWrite(uint8 *dat)
{uint8 i;DS1302_CE = 1;DS1302ByteWrite(0xBE); //发送突发写寄存器指令for (i = 0; i < 8; i++) //连续写入8字节数据{DS1302ByteWrite(dat[i]);}DS1302_CE = 0;
}
/* 用突发模式连续读取8个寄存器的数据,dat-读取数据的接收指针 */
void DS1302BurstRead(uint8 *dat)
{uint8 i;DS1302_CE = 1;DS1302ByteWrite(0xBF); //发送突发读寄存器指令for (i = 0; i < 8; i++) //连续读取8个字节{dat[i] = DS1302ByteRead();}DS1302_CE = 0;
}
/* 获取实时时间,即读取DS1302当前时间并转换为时间结构体格式 */
void GetRealTime(struct sTime *time)
{uint8 buf[8];DS1302BurstRead(buf);time->year = buf[6] + 0x2000;time->mon = buf[4];time->day = buf[3];time->hour = buf[2];time->min = buf[1];time->sec = buf[0];time->week = buf[5];
}
/* 设定实时时间,时间结构体格式的设定时间转换为数组并写入DS1302 */
void SetRealTime(struct sTime *time)
{uint8 buf[8];buf[7] = 0;buf[6] = time->year;buf[5] = time->week;buf[4] = time->mon;buf[3] = time->day;buf[2] = time->hour;buf[1] = time->min;buf[0] = time->sec;DS1302BurstWrite(buf);
}
/* DS1302初始化,如发生掉电则重新设置初始时间 */
void InitDS1302()
{uint8 dat;struct sTime code InitTime[] = //默认初始值:2014-01-0112:30:00 星期3{0x2014, 0x01, 0x01, 0x12, 0x30, 0x00, 0x03};DS1302_CE = 0; //初始化DS1302通信引脚DS1302_CK = 0;dat = DS1302SingleRead(0); //读取秒寄存器if ((dat & 0x80) != 0) //由秒寄存器最高位CH的值判断DS1302是否已停止{DS1302SingleWrite(7, 0x00); //撤销写保护以允许写入数据SetRealTime(&InitTime); //设置DS1302为默认的初始时间}
}<span style="font-family: Arial, Helvetica, sans-serif; background-color: rgb(255, 255, 255);"> </span>
// 温度传感器DS18B20驱动模块DS18B20.c:DS18B20.cs
#define _DS18B20_C
#include "config.h"
#include "DS18B20.h"/* 软件延时函数,延时时间(t*10)us */
void DelayX10us(uint8 t)
{do{_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();_nop_();}while (--t);
}
/* 复位总线,获取存在脉冲,以启动一次读写操作 */
bit Get18B20Ack()
{bit ack;EA = 0; //禁止总中断IO_18B20 = 0; //产生500us复位脉冲DelayX10us(50);IO_18B20 = 1;DelayX10us(6); //延时60usack = IO_18B20; //读取存在脉冲while(!IO_18B20); //等待存在脉冲结束EA = 1; //重新使能总中断return ack;
}
/* 向DS18B20写入一个字节,dat-待写入字节 */
void Write18B20(uint8 dat)
{uint8 mask;EA = 0; //禁止总中断for (mask = 0x01; mask != 0; mask <<= 1) //低位在先,依次移出8个bit{IO_18B20 = 0; //产生2us低电平脉冲_nop_();_nop_();if ((mask & dat) == 0) //输出该bit值{IO_18B20 = 0;}else{IO_18B20 = 1;}DelayX10us(6); //延时60usIO_18B20 = 1; //拉高通信引脚}EA = 1; //重新使能总中断
}
/* 从DS18B20读取一个字节,返回值-读到的字节 */
uint8 Read18B20()
{uint8 dat;uint8 mask;EA = 0; //禁止总中断for (mask = 0x01; mask != 0; mask <<= 1) //低位在先,依次采集8个bit{IO_18B20 = 0; //产生2us低电平脉冲_nop_();_nop_();IO_18B20 = 1; //结束低电平脉冲,等待18B20输出数据_nop_(); //延时2us_nop_();if (!IO_18B20) //读取通信引脚上的值{dat &= ~mask;}else{dat |= mask;}DelayX10us(6); //再延时60us}EA = 1; //重新使能总中断return dat;
}
/* 启动一次18B20温度转换,返回值-表示是否启动成功 */
bit Start18B20()
{bit ack;ack = Get18B20Ack(); //执行总线复位,并获取18B20应答if (ack == 0) //如18B20正确应答,则启动一次转换{Write18B20(0xCC); //跳过ROM操作Write18B20(0x44); //启动一次温度转换}return ~ack; //ack==0表示操作成功,所以返回值对其取反
}
/* 读取DS18B20转换的温度值,返回值-表示是否读取成功 */
bit Get18B20Temp(int16 *temp)
{bit ack;uint8 LSB, MSB; //16bit温度值的低字节和高字节ack = Get18B20Ack(); //执行总线复位,并获取18B20应答if (ack == 0) //如18B20正确应答,则读取温度值{Write18B20(0xCC); //跳过ROM操作Write18B20(0xBE); //发送读命令LSB = Read18B20(); //读温度值的低字节MSB = Read18B20(); //读温度值的高字节*temp = ((int16)MSB << 8) + LSB; //合成为16bit整型数}return~ack; //ack==0表示操作应答,所以返回值为其取反值
}
// 多功能电子钟主要功能文件Time.c:
#define _TIME_C
#include "config.h"
#include "DS1302.h"
#include "LedBuzzer.h"
#include "Lcd1602.h"
#include "Time.h"
#include "main.h"uint8 code WeekMod[] = //星期X字符图片表
{0xFF, 0x99, 0x00, 0x00, 0x00, 0x81, 0xC3, 0xE7, //星期日(红心)0xEF, 0xE7, 0xE3, 0xE7, 0xE7, 0xE7, 0xE7, 0xC3, //星期10xC3, 0x81, 0x9D, 0x87, 0xC3, 0xF9, 0xC1, 0x81, //星期20xC3, 0x81, 0x9D, 0xC7, 0xC7, 0x9D, 0x81, 0xC3, //星期30xCF, 0xC7, 0xC3, 0xC9, 0xC9, 0x81, 0xCF, 0xCF, //星期40x81, 0xC1, 0xF9, 0xC3, 0x87, 0x9D, 0x81, 0xC3, //星期50xC3, 0x81, 0xF9, 0xC3, 0x81, 0x99, 0x81, 0xC3, //星期6
};bit staMute = 0; //静音标志位
uint8 AlarmHour = 0x07; //闹钟时间的小时数
uint8 AlarmMin = 0x30; //闹钟时间的分钟数
struct sTime CurTime; //当前日期时间uint8 SetIndex = 0; //设置位索引
uint8 pdata SetAlarmHour; //闹钟小时数设置缓冲
uint8 pdata SetAlarmMin; //闹钟分钟数设置缓冲
struct sTime pdata SetTime; //日期时间设置缓冲区/* 获取当前日期时间,并刷新时间和星期的显示 */
void RefreshTime()
{GetRealTime(&CurTime); //获取当前日期时间ShowLedNumber(5, CurTime.hour >> 4, 0); //时ShowLedNumber(4, CurTime.hour & 0xF, 1);ShowLedNumber(3, CurTime.min >> 4, 0); //分ShowLedNumber(2, CurTime.min & 0xF, 1);ShowLedNumber(1, CurTime.sec >> 4, 0); //秒ShowLedNumber(0, CurTime.sec & 0xF, 0);ShowLedArray(WeekMod + CurTime.week * 8); //星期
}
/* 日期刷新函数,ops-刷新选项:为0时只当日期变化才刷新,非0则立即刷新 */
void RefreshDate(uint8 ops)
{uint8 pdata str[12];static uint8 backup = 0;if ((backup != CurTime.day) || (ops != 0)){str[0] = ((CurTime.year >> 12) & 0xF) + '0'; //4位数年份str[1] = ((CurTime.year >> 8) & 0xF) + '0';str[2] = ((CurTime.year >> 4) & 0xF) + '0';str[3] = (CurTime.year & 0xF) + '0';str[4] = '-'; //分隔符str[5] = (CurTime.mon >> 4) + '0'; //月份str[6] = (CurTime.mon & 0xF) + '0';str[7] = '-'; //分隔符str[8] = (CurTime.day >> 4) + '0'; //日期str[9] = (CurTime.day & 0xF) + '0';str[10] = '\0'; //字符串结束符LcdShowStr(0, 0, str); //显示到液晶上backup = CurTime.day; //刷新上次日期值}
}
/* 刷新闹钟时间的显示 */
void RefreshAlarm()
{uint8 pdata str[8];LcdShowStr(0, 1, "Alarm at "); //显示提示标题str[0] = (AlarmHour >> 4) + '0'; //闹钟小时数str[1] = (AlarmHour & 0xF) + '0';str[2] = ':'; //分隔符str[3] = (AlarmMin >> 4) + '0'; //闹钟分钟数str[4] = (AlarmMin & 0xF) + '0';str[5] = '\0'; //字符串结束符LcdShowStr(9, 1, str); //显示到液晶上
}
/* 闹钟监控函数,抵达设定的闹钟时间时执行闹铃 */
void AlarmMonitor()
{if ((CurTime.hour == AlarmHour) && (CurTime.min == AlarmMin)) //检查时间匹配{if (!staMute) //检查是否静音{staBuzzer = ~staBuzzer; //实现蜂鸣器断续鸣叫}else{staBuzzer = 0;}}else{staMute = 0;staBuzzer = 0;}
}
/* 将设置时间及标题提示显示到液晶上 */
void ShowSetTime()
{uint8 pdata str[18];str[0] = ((SetTime.year >> 4) & 0xF) + '0'; //2位数年份str[1] = (SetTime.year & 0xF) + '0';str[2] = '-';str[3] = (SetTime.mon >> 4) + '0'; //月份str[4] = (SetTime.mon & 0xF) + '0';str[5] = '-';str[6] = (SetTime.day >> 4) + '0'; //日期str[7] = (SetTime.day & 0xF) + '0';str[8] = '-';str[9] = (SetTime.week & 0xF) + '0'; //星期str[10] = ' ';str[11] = (SetTime.hour >> 4) + '0'; //小时str[12] = (SetTime.hour & 0xF) + '0';str[13] = ':';str[14] = (SetTime.min >> 4) + '0'; //分钟str[15] = (SetTime.min & 0xF) + '0';str[16] = '\0';LcdShowStr(0, 0, "Set Date Time"); //显示提示标题LcdShowStr(0, 1, str); //显示设置时间值
}
/* 将设置闹钟及标题提示显示到液晶上 */
void ShowSetAlarm()
{uint8 pdata str[8];str[0] = (SetAlarmHour >> 4) + '0'; //小时str[1] = (SetAlarmHour & 0xF) + '0';str[2] = ':';str[3] = (SetAlarmMin >> 4) + '0'; //分钟str[4] = (SetAlarmMin & 0xF) + '0';str[5] = '\0';LcdShowStr(0, 0, "Set Alarm"); //显示提示标题LcdShowStr(0, 1, str); //显示设定闹钟值
}
/* 取消当前设置,返回正常运行状态 */
void CancelCurSet()
{staSystem = E_NORMAL;LcdCloseCursor(); //关闭光标LcdClearScreen(); //液晶清屏RefreshTime(); //刷新当前时间RefreshDate(1); //立即刷新日期显示RefreshTemp(1); //立即刷新温度显示RefreshAlarm(); //闹钟设定值显示
}
/* 时间或闹钟设置时,设置位右移一位,到头后折回 */
void SetRightShift()
{if (staSystem == E_SET_TIME){switch (SetIndex){case 0:SetIndex = 1;LcdSetCursor(1, 1);break;case 1:SetIndex = 2;LcdSetCursor(3, 1);break;case 2:SetIndex = 3;LcdSetCursor(4, 1);break;case 3:SetIndex = 4;LcdSetCursor(6, 1);break;case 4:SetIndex = 5;LcdSetCursor(7, 1);break;case 5:SetIndex = 6;LcdSetCursor(9, 1);break;case 6:SetIndex = 7;LcdSetCursor(11, 1);break;case 7:SetIndex = 8;LcdSetCursor(12, 1);break;case 8:SetIndex = 9;LcdSetCursor(14, 1);break;case 9:SetIndex = 10;LcdSetCursor(15, 1);break;default:SetIndex = 0;LcdSetCursor(0, 1);break;}}else if (staSystem == E_SET_ALARM){switch (SetIndex){case 0:SetIndex = 1;LcdSetCursor(1, 1);break;case 1:SetIndex = 2;LcdSetCursor(3, 1);break;case 2:SetIndex = 3;LcdSetCursor(4, 1);break;default:SetIndex = 0;LcdSetCursor(0, 1);break;}}
}
/* 时间或闹钟设置时,设置位左移一位,到头后折回 */
void SetLeftShift()
{if (staSystem == E_SET_TIME){switch (SetIndex){case 0:SetIndex = 10;LcdSetCursor(15, 1);break;case 1:SetIndex = 0;LcdSetCursor(0, 1);break;case 2:SetIndex = 1;LcdSetCursor(1, 1);break;case 3:SetIndex = 2;LcdSetCursor(3, 1);break;case 4:SetIndex = 3;LcdSetCursor(4, 1);break;case 5:SetIndex = 4;LcdSetCursor(6, 1);break;case 6:SetIndex = 5;LcdSetCursor(7, 1);break;case 7:SetIndex = 6;LcdSetCursor(9, 1);break;case 8:SetIndex = 7;LcdSetCursor(11, 1);break;case 9:SetIndex = 8;LcdSetCursor(12, 1);break;default:SetIndex = 9;LcdSetCursor(14, 1);break;}}else if (staSystem == E_SET_ALARM){switch (SetIndex){case 0:SetIndex = 3;LcdSetCursor(4, 1);break;case 1:SetIndex = 0;LcdSetCursor(0, 1);break;case 2:SetIndex = 1;LcdSetCursor(1, 1);break;default:SetIndex = 2;LcdSetCursor(3, 1);break;}}
}
/* 输入设置数字,修改对应的设置位,并显示该数字,ascii-输入数字的ASCII码 */
void InputSetNumber(uint8 ascii)
{uint8 num;num = ascii - '0';if (num <= 9) //只响应0~9的数字{if (staSystem == E_SET_TIME){switch (SetIndex){case 0:SetTime.year = (SetTime.year & 0xFF0F) | (num << 4);LcdShowChar(0, 1, ascii);break; //年份高位数字case 1:SetTime.year = (SetTime.year & 0xFFF0) | (num);LcdShowChar(1, 1, ascii);break; //年份低位数字case 2:SetTime.mon = (SetTime.mon & 0x0F) | (num << 4);LcdShowChar(3, 1, ascii);break; //月份高位数字case 3:SetTime.mon = (SetTime.mon & 0xF0) | (num);LcdShowChar(4, 1, ascii);break; //月份低位数字case 4:SetTime.day = (SetTime.day & 0x0F) | (num << 4);LcdShowChar(6, 1, ascii);break; //日期高位数字case 5:SetTime.day = (SetTime.day & 0xF0) | (num);LcdShowChar(7, 1, ascii);break; //日期低位数字case 6:SetTime.week = (SetTime.week & 0xF0) | (num);LcdShowChar(9, 1, ascii);break; //星期数字case 7:SetTime.hour = (SetTime.hour & 0x0F) | (num << 4);LcdShowChar(11, 1, ascii);break; //小时高位数字case 8:SetTime.hour = (SetTime.hour & 0xF0) | (num);LcdShowChar(12, 1, ascii);break; //小时低位数字case 9:SetTime.min = (SetTime.min & 0x0F) | (num << 4);LcdShowChar(14, 1, ascii);break; //分钟高位数字default:SetTime.min = (SetTime.min & 0xF0) | (num);LcdShowChar(15, 1, ascii);break; //分钟低位数字}SetRightShift(); //完成该位设置后自动右移}else if (staSystem == E_SET_ALARM){switch (SetIndex){case 0:SetAlarmHour = (SetAlarmHour & 0x0F) | (num << 4);LcdShowChar(0, 1, ascii);break; //小时高位数字case 1:SetAlarmHour = (SetAlarmHour & 0xF0) | (num);LcdShowChar(1, 1, ascii);break; //小时低位数字case 2:SetAlarmMin = (SetAlarmMin & 0x0F) | (num << 4);LcdShowChar(3, 1, ascii);break; //分钟高位数字default:SetAlarmMin = (SetAlarmMin & 0xF0) | (num);LcdShowChar(4, 1, ascii);break; //分钟低位数字}SetRightShift(); //完成该位设置后自动右移}}
}
/* 切换系统运行状态 */
void SwitchSystemSta()
{if (staSystem == E_NORMAL) //正常运行切换到时间设置{staSystem = E_SET_TIME;SetTime.year = CurTime.year; //当前时间拷贝到时间设置缓冲区中SetTime.mon = CurTime.mon;SetTime.day = CurTime.day;SetTime.hour = CurTime.hour;SetTime.min = CurTime.min;SetTime.sec = CurTime.sec;SetTime.week = CurTime.week;LcdClearScreen(); //液晶清屏ShowSetTime(); //显示设置时间SetIndex = 255; //与接下来的右移一起将光标设在最左边的位置上SetRightShift();LcdOpenCursor(); //开启光标}else if (staSystem == E_SET_TIME) //时间设置切换到闹钟设置{staSystem = E_SET_ALARM;SetTime.sec = 0; //秒清零,即当设置时间后从0秒开始走时SetRealTime(&SetTime); //设定时间写入实时时钟SetAlarmHour = AlarmHour; //当前闹钟值拷贝到设置缓冲区SetAlarmMin = AlarmMin;LcdClearScreen(); //液晶清屏ShowSetAlarm(); //显示设置闹钟SetIndex = 255; //与接下来的右移一起将光标设在最左边的位置上SetRightShift();}else //闹钟设置切换会正常运行{staSystem = E_NORMAL;AlarmHour = SetAlarmHour; //设定的闹钟值写入闹钟时间AlarmMin = SetAlarmMin;LcdCloseCursor(); //关闭光标LcdClearScreen(); //液晶清屏RefreshTime(); //刷新当前时间RefreshDate(1); //立即刷新日期显示RefreshTemp(1); //立即刷新温度显示RefreshAlarm(); //闹钟设定值显示}
}
/* 按键动作函数,根据键码执行相应的操作,keycode-按键键码 */
void KeyAction(uint8 keycode)
{if ((keycode >= '0') && (keycode <= '9')) //数字键输入当前位设定值{InputSetNumber(keycode);}else if (keycode == 0x25) //向左键,向左切换设置位{SetLeftShift();}else if (keycode == 0x27) //向右键,向右切换设置位{SetRightShift();}else if (keycode == 0x0D) //回车键,切换运行状态/保存设置{SwitchSystemSta();}else if (keycode == 0x1B) //Esc键,静音/取消当前设置{if (staSystem == E_NORMAL) //处于正常运行状态时闹铃静音{staMute = 1;}else //处于设置状态时退出设置{CancelCurSet();}}
}
// 4*4矩阵按键驱动模块keyboard.c:
#define _KEY_BOARD_C
#include "config.h"
#include "keyboard.h"
#include "Time.h"const uint8 code KeyCodeMap[4][4] = //矩阵按键到标准键码的映射表
{{ '1', '2', '3', 0x26 }, //数字键1、数字键2、数字键3、向上键{ '4', '5', '6', 0x25 }, //数字键4、数字键5、数字键6、向左键{ '7', '8', '9', 0x28 }, //数字键7、数字键8、数字键9、向下键{ '0', 0x1B, 0x0D, 0x27 } //数字键0、ESC键、 回车键、 向右键
};
uint8 pdata KeySta[4][4] = //全部矩阵按键的当前状态
{{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}
};/* 按键驱动函数,检测按键动作,调度相应动作函数,需在主循环中调用 */
void KeyDriver()
{uint8 i, j;static uint8 pdata backup[4][4] = //按键值备份,保存前一次的值{{1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}, {1, 1, 1, 1}};for (i = 0; i < 4; i++) //循环检测4*4的矩阵按键{for (j = 0; j < 4; j++){if (backup[i][j] != KeySta[i][j]) //检测按键动作{if (backup[i][j] != 0) //按键按下时执行动作{KeyAction(KeyCodeMap[i][j]); //调用按键动作函数}backup[i][j] = KeySta[i][j]; //刷新前一次的备份值}}}
}
/* 按键扫描函数,需在定时中断中调用,推荐调用间隔1ms */
void KeyScan()
{uint8 i;static uint8 keyout = 0; //矩阵按键扫描输出索引static uint8 keybuf[4][4] = //矩阵按键扫描缓冲区{{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF},{0xFF, 0xFF, 0xFF, 0xFF}, {0xFF, 0xFF, 0xFF, 0xFF}};//将一行的4个按键值移入缓冲区keybuf[keyout][0] = (keybuf[keyout][0] << 1) | KEY_IN_1;keybuf[keyout][1] = (keybuf[keyout][1] << 1) | KEY_IN_2;keybuf[keyout][2] = (keybuf[keyout][2] << 1) | KEY_IN_3;keybuf[keyout][3] = (keybuf[keyout][3] << 1) | KEY_IN_4;//消抖后更新按键状态for (i = 0; i < 4; i++) //每行4个按键,所以循环4次{if ((keybuf[keyout][i] & 0x0F) == 0x00){//连续4次扫描值为0,即4*4ms内都是按下状态时,可认为按键已稳定的按下KeySta[keyout][i] = 0;}else if ((keybuf[keyout][i] & 0x0F) == 0x0F){//连续4次扫描值为1,即4*4ms内都是弹起状态时,可认为按键已稳定的弹起KeySta[keyout][i] = 1;}}//执行下一次的扫描输出keyout++; //输出索引递增keyout &= 0x03; //索引值加到4即归零switch (keyout) //根据索引值,释放当前输出引脚,拉低下次的输出引脚{case 0:KEY_OUT_4 = 1;KEY_OUT_1 = 0;break;case 1:KEY_OUT_1 = 1;KEY_OUT_2 = 0;break;case 2:KEY_OUT_2 = 1;KEY_OUT_3 = 0;break;case 3:KEY_OUT_3 = 1;KEY_OUT_4 = 0;break;default:break;}
}
// 点阵LED、数码管、独立LED和无源蜂鸣器的驱动模块LedBuzzer.c:
#define _LED_BUZZER_C
#include "config.h"
#include "LedBuzzer.h"uint8 code LedChar[] = //数码管显示字符转换表
{0xC0, 0xF9, 0xA4, 0xB0, 0x99, 0x92, 0x82, 0xF8,0x80, 0x90, 0x88, 0x83, 0xC6, 0xA1, 0x86, 0x8E
};bit staBuzzer = 0; //蜂鸣器状态控制位,1-鸣叫、0-关闭
struct sLedBuff ledBuff; //LED显示缓冲区,默认初值全0,正好达到上电全亮的效果/* LED初始化函数,初始化IO、配置定时器 */
void InitLed()
{//初始化IO口P0 = 0xFF;ENLED = 0;//配置T2作为动态扫描定时T2CON = 0x00; //配置T2工作在16位自动重载定时器模式RCAP2H = ((65536 - SYS_MCLK / 1500) >> 8); //配置重载值,每秒产生1500次中断,RCAP2L = (65536 - SYS_MCLK / 1500); //以使刷新率达到100Hz无闪烁的效果TH2 = RCAP2H; //设置初值等于重载值TL2 = RCAP2L;ET2 = 1; //使能T2中断PT2 = 1; //设置T2中断为高优先级TR2 = 1; //启动T2
}
/* 流水灯实现函数,间隔调用实现流动效果 */
void FlowingLight()
{static uint8 i = 0;const uint8 code tab[] = //流动表{0x7F, 0x3F, 0x1F, 0x0F, 0x87, 0xC3, 0xE1, 0xF0, 0xF8, 0xFC, 0xFE, 0xFF};ledBuff.alone = tab[i]; //表中对应值送到独立LED的显示缓冲区if (i < (sizeof(tab) - 1)) //索引递增循环,遍历整个流动表{i++;}else{i = 0;}
}
/* 数码管上显示一位数字,index-数码管位索引(从右到左对应0~5),
** num-待显示的数字,point-代表是否显示此位上的小数点 */
void ShowLedNumber(uint8 index, uint8num, uint8 point)
{ledBuff.number[index] = LedChar[num]; //输入数字转换为数码管字符0~Fif (point != 0){ledBuff.number[index] &= 0x7F; //point不为0时点亮当前位的小数点}
}
/* 点阵上显示一帧图片,ptr-待显示图片指针 */
void ShowLedArray(uint8 *ptr)
{uint8 i;for (i = 0; i < sizeof(ledBuff.array); i++){ledBuff.array[i] = *ptr++;}
}
/* T2中断服务函数,LED动态扫描、蜂鸣器控制 */
void InterruptTimer2() interrupt 5
{static uint8 i = 0; //LED位选索引TF2 = 0; //清零T2中断标志//全部LED动态扫描显示if (ENLED == 0) //LED使能时才进行动态扫描{P0 = 0xFF; //关闭所有段选位,显示消隐P1 = (P1 & 0xF0) | i; //位选索引值赋值到P1口低4位P0 = *((uint8 data*)&ledBuff + i); //缓冲区中索引位置的数据送到P0口if (i < (sizeof(ledBuff) - 1)) //索引递增循环,遍历整个缓冲区{i++;}else{i = 0;}}//由蜂鸣器状态位控制蜂鸣器if (staBuzzer == 1){BUZZER = ~BUZZER; //蜂鸣器鸣叫}else{ BUZZER = 1; } //蜂鸣器静音
}
// 多功能电子钟工程主文件main.c:
#define _MAIN_C
#include "config.h"
#include "Lcd1602.h"
#include "LedBuzzer.h"
#include "keyboard.h"
#include "DS1302.h"
#include "DS18B20.h"
#include "Infrared.h"
#include "Time.h"
#include "main.h"bit flag2s = 0; //2s定时标志位
bit flag200ms = 0; //200ms定时标志
uint8 T0RH = 0; //T0重载值的高字节
uint8 T0RL = 0; //T0重载值的低字节
enum eStaSystem staSystem = E_NORMAL; //系统运行状态void main()
{EA = 1; //开总中断ConfigTimer0(1); //配置T0定时1msInitLed(); //初始化LED模块InitDS1302(); //初始化实时时钟模块InitLcd1602(); //初始化液晶模块Start18B20(); //启动首次温度转换while (!flag2s); //上电后延时2秒flag2s = 0;RefreshTime(); //刷新当前时间RefreshDate(1); //立即刷新日期显示RefreshTemp(1); //立即刷新温度显示RefreshAlarm(); //闹钟设定值显示while (1) //进入主循环{KeyDriver(); //执行按键驱动if (flag200ms) //每隔200ms执行以下分支{flag200ms = 0;FlowingLight(); //流水灯效果实现RefreshTime(); //刷新当前时间AlarmMonitor(); //监控闹钟if (staSystem == E_NORMAL) //正常运行时刷新日期显示{RefreshDate(0);}}if (flag2s) //每隔2s执行以下分支{flag2s = 0;if (staSystem == E_NORMAL) //正常运行时刷新温度显示{RefreshTemp(0);}}}
}
/* 温度刷新函数,读取当前温度并根据需要刷新液晶显示,
** ops-刷新选项:为0时只当温度变化才刷新,非0则立即刷新 */
void RefreshTemp(uint8 ops)
{int16 temp;uint8 pdata str[8];static int16 backup = 0;Get18B20Temp(&temp); //获取当前温度值Start18B20(); //启动下一次转换temp >>= 4; //舍弃4bit小数位if ((backup != temp) || (ops != 0)) //按需要刷新液晶显示{str[0] = (temp / 10) + '0'; //十位转为ASCII码str[1] = (temp % 10) + '0'; //个位转为ASCII码str[2] = '\''; //用'C代替℃str[3] = 'C';str[4] = '\0'; //字符串结束符LcdShowStr(12, 0, str); //显示到液晶上backup = temp; //刷新上次温度值}
}
/* 配置并启动T0,ms-T0定时时间 */
void ConfigTimer0(uint16 ms)
{uint32 tmp;tmp = (SYS_MCLK * ms) / 1000; //计算所需的计数值tmp = 65536 - tmp; //计算定时器重载值tmp = tmp + 33; //补偿中断响应延时造成的误差T0RH = (uint8)(tmp >> 8); //定时器重载值拆分为高低字节T0RL = (uint8)tmp;TMOD &= 0xF0; //清零T0的控制位TMOD |= 0x01; //配置T0为模式1TH0 = T0RH; //加载T0重载值TL0 = T0RL;ET0 = 1; //使能T0中断TR0 = 1; //启动T0
}
/* T0中断服务函数,实现系统定时和按键扫描 */
void InterruptTimer0() interrupt 1
{static uint8 tmr2s = 0;static uint8 tmr200ms = 0;TH0 = T0RH; //重新加载重载值TL0 = T0RL;tmr200ms++; //定时200msif (tmr200ms >= 200){tmr200ms = 0;flag200ms = 1;tmr2s++; //定时2sif (tmr2s >= 10){tmr2s = 0;flag2s = 1;}}KeyScan(); //执行按键扫描
}