使用ucontext组件实现的coroutine代码分析

coroutine一般翻译过来就是协程,类似于线程可以切换,而跟线程是由操作系统调度器来实现切换不一样,协程由用户程序自己调度进行切换。我以前也看过协程相关的内容,但没有自己去实现过。最近搞OpenStack,OpenStack各个模块都是单线程模型,但是用了eventlet的绿色线程,eventlet也是Python的协程实现库。这篇文章我并不打算剖析Python协程库的实现,而是分析一个基于Linux下ucontext组件的C语言实现,原作者是云风,我以前也看过这个实现,只是现在忘了,没有自己写过或者分析过代码,只是看看好像永远是似懂非懂。后来yanyiwu又fork了一个实现并做些修改,据说更易懂,我就直接拿他修改后的版本分析就ok了,这里对他们表示感谢。


这个简单的实现包含三个文件,分别是头文件coroutine.h,协程实现文件coroutine.c和测试主程序main.c,我给代码加了点注释,并编译运行。


coroutine.h源码:




coroutine.h里面是一些宏定义和函数声明:


coroutine_func:一个函数指针,声明了coroutine的函数原型;

coroutine_open:要使用该协程库时第一个被调用的函数,它返回一个调度器结构体;

coroutine_close:关闭协程调度器,最后被调用不解释;

coroutine_new:将一个函数还有需要传递的参数加入到协程的调度器里边;

coroutine_yield:退出当前运行的协程;

coroutine_resume:恢复具有特定id值的协程;

coroutine_running:返回正在运行的协程id,-1表示没有正在运行的协程;

schedule_status:返回1表示还有等待运行的协程,返回0表示所有协程都已运行完毕;


主要的实现都在coroutine.c文件,源码如下:




对coroutine.c源码我们暂时不作分析,一会儿分析main.c时自然会讲到它。


main.c源码如下:




我们来分析下main.c的代码。先看下main函数,调用了coroutine_open函数,返回一个调度器结构体,然后调用test函数并把调度器结构体当作参数,最后调用coroutine_close函数关闭调度器。显然,test函数就是接脏活累活的地方了。看下test函数里的35,36行,调用了coroutine_new创建两个协程,分别使用了函数foo和foo2,参数分别为arg1和arg2,并返回了协程id,分别为co1和co2。接着是一个while循环,看下代码:

 

while (schedule_status(S)) {

                 coroutine_resume(S,co1);
                 coroutine_resume(S,co2);
}


可以看出,当schedule_status返回为1时,将对协程co1和co2分别调用 coroutine_resume函数,schedule_status返回0时test函数退出。这回,我们不得不去看coroutine_resume函数了:


coroutine_resume函数有两个参数,分别为调度器结构体和协程id。该函数首先根据协程id从调度器中获取对应的协程结构体,然后对状态status作判断,可能的状态为COROUTINE_READY和COROUTINE_SUSPEND。


status为COROUTINE_READY(协程第一次被调度)时:


调用getcontext获取当前(注意,当前不是传进来id所对应的协程)协程的上下文,保存在传进来的id所对应的协程结构体中类型为ucontext_t的变量ctx,接着修改ctx结构体的栈指针和栈大小,并把该协程退出时要执行的协程上下文设置成调度器结构体内类型为ucontext_t的变量main,然后将调度器结构体里running变量设置为要将要执行的协程的id,将要执行的协程的状态status设置为COROUTINE_RUNNING,再调用makecontext修改要执行协程上下文,参数为要执行的协程上下文变量、mainfunc函数地址、mainfunc参数个数、给mainfunc传递的参数,因此后续该协程执行时,就会调用mainfunc函数,最后调用swapcontext,该函数将当前协程的上下文内容保存在调度器结构体的main变量中,并激活要执行的协程上下文,于是mainfunc函数被调用了。


status为COROUTINE_SUSPEND时:


将调度器结构体里的变量running设置成传进来的参数id,将该id对应的协程状态status设置成COROUTINE_RUNNING,调用swapcontext保存当前协程上下文,激活执行参数id对应的协程。当协程为这个状态时,肯定是曾经被调度过了,即经历过了COROUTINE_READY阶段,其栈指针已经被修改过,因此不需要再次修改而直接激活执行。


不难看出,每个协程第一次被调度时,都调用了makecontext函数并把mainfunc函数设置成该协程执行时就去调用的函数,因此我们知道,协程co1和co2所对应函数foo和foo2都是在mainfunc中被调用。我们再看下foo和foo2的实现:


这两个函数中都有一个for循环,每循环一次就调用coroutine_yield函数,该函数首先将当前协程的状态status改为COROUTINE_SUSPEND,将调度器结构体里running变量设置为-1,再调用swapcontext将协程上下文保存在当前协程的结构体变量ctx中,激活调度器结构体里main变量对应的协程上下文,这里实际上是切换到了主协程。


说到这里,估计有些同学还是不明不白的,我根据自己的理解具体来解释一下流程:


while循环里边对协程co1调用coroutine_resume时,由于第一次调用进入COROUTINE_READY分支,这时候getcontext获取主协程(不知道描述对不对)的上下文,然后修改栈后作为协程上下文保存在co1对于的协程结构体中,然后mainfunc中执行co1对于的函数foo,在foo中调用了coroutine_yield,这时co1被设置成COROUTINE_SUSPEND,切换到刚才保存的主协程中,这是test函数里边的coroutine_resume又被调用,不过这时是对co2,同样的命运,co2对应的foo2被调度执行,没想到foo2函数也自动将自己设置成COROUTINE_SUSPEND,这时又切换到了主协程中,test中又一次循环开始,coroutine_resume对co1调用,只是这次进入COROUTINE_SUSPEND分支,这回不用设置什么栈了,直接换成执行协程co1,对co2也一样,不再赘述。


那么问题又来了,co1和co2什么时候彻底结束、主程序得以退出呢?


foo和foo2中的for循环次数是有限的,当循环条件不满足时,coroutine_yield函数不会被调用,这时mainfunc中的调用:“C->func(S, C->arg); ”结束,之后的语句“C->status = COROUTINE_DEAD;”被调用,将对应的协程状态status设置为COROUTINE_DEAD。当两个协程状态都为COROUTINE_DEAD时,schedule_status函数返回0,主协程中的while循环退出,主程序就退出了。再看下程序的执行结果,一切都变得明了了。


运行结果:



转载于:https://www.cnblogs.com/woshiweige/p/4518428.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/459464.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++模板剖析:函数模板、类模板解析

C中关于模板&泛型编程问题: 问题引入:何编写一个通用加法函数? (1)使用函数重载,针对每个所需相同行为的不同类型重新实现它 int Add(const int &_iLeft, const int&_iRight) { return (_iL…

Android Studio 1.1的安装和遇到的坑

Google的Android Studio 出1.0稳定版本也有很久的时间了,一直喜欢Jetbrains公司的IDE,不同语言的IDE操作习惯都比较统一。 而Android Studio 是基于IntelliJ IDEA的社区版开发的 ,怎么也要尝尝鲜才行。 今天安装了下,被几个小坑卡…

BestCoder Round #39 解题报告

现场只做出前三题w 不过不管怎样这既是第一次认真打BC 又是第一次体验用在线编译器调代码 订正最后一题花了今天一整个下午(呜呜 收获还是比较大的^_^ Delete wld有n个数(a1,a2,...,an),他希望进行k次删除一个数的操作,使得最后剩下的n−k个数…

linux :vim 实现命令行下输出进度条

1、 进度条原理: 进度条的的动态增长是利用人的视觉短暂停留效果的,不断从输出缓冲区刷新出相同的内容,在肉眼看来进度条在不断的增长。 在显示器上先输出[# ][%1] 刷新一次之后, …

***jquery选择器 之 获取父级元素、同级元素、子元素

一、获取父级元素1、 parent([expr]): 获取指定元素的所有父级元素 <div id"par_div"><a id"href_fir" href"#">href_fir</a><a id"href_sec" href"#">href_sec</a><a id"href_thr&q…

Sql Server字符串函数

字符串函数用于对字符和二进制字符进行各种操作 1.ASCII()函数 ASCII(character_expression)函数用于返回字符串表达式中最左侧的ASCII代码值。参数character_expression必须是一个char或varchar类型的字符串表达式。 eg: select ASCII(s),ASCII(sql),ASCII(1);执行结果如图:字…

linux 编辑器vim配置

1、 基本配置 对vim进行配置的目的&#xff1a; 进行vim配置&#xff0c;可以让我们在后续敲代码更加方便。按F5可以直接编译并执行C、C代码以及执行shell脚本&#xff1b;按“F8”可进行C、C代码的调试&#xff1b;“Ctrl A”为全选并复制快捷键&#xff0c;方便复…

centos 7上ambari安装试用

2019独角兽企业重金招聘Python工程师标准>>> 1、有三台centos7&#xff0c;名字分别是ws11.localdomain, ws12.localdomain, ws13.localdomain。配置epel源(安装epel-release)。 2、配置root用户ssh无密码访问。 3、安装ntp对时服务。 4、关闭防火墙。centos7下使…

进程管理—进程描述符(task_struct)

本文章转载自&#xff1a;http://blog.csdn.net/qq_26768741/article/details/54348586?locationNum4&fps1 前言 当把一个程序加载到内存当中&#xff0c;此时&#xff0c;这个时候就有了进程&#xff0c;关于进程&#xff0c;有一个相关的叫做进程控制块&#xff08;PCB&…

如何使用emacs编写c语言程序,并编译运行

vi和emacs被分别被称为编辑器之神和神之编辑器。vi的入门精通都很难&#xff0c;emacs入门容易&#xff0c;精通难&#xff1b;vi使用起来不停地切换模式&#xff0c;而emacs则不停地ctrl&#xff0c;meta等组合键。因此&#xff0c;高德纳大师说操作Emacs&#xff0c;就像弹奏…

操作系统中常见的进程调度算法

一、调度与调度算法 调度&#xff1a;操作系统管理了系统的有限资源&#xff0c;当有多个进程&#xff08;或多个进程发出的请求&#xff09;要使用这些资源时&#xff0c;因为资源的有限性&#xff0c;必须按照一定的原则选择进程&#xff08;请求&#xff09;来占用资源。这…

粘滞位 File文件内容

t权限&#xff08;粘滞位)&#xff1a; 是‘不可删除’权限&#xff0c;就是说即使某用户拥有这个文件的rwx权限&#xff0c;可以随意修改文件内容&#xff0c;但是就是不能删除&#xff0c;甚至不能修改文件名&#xff0c;只有root才行。t权限也可以直接用 chmod ot/at fil…

QQuickRenderControl

2019独角兽企业重金招聘Python工程师标准>>> http://doc.qt.io/qt-5/qquickrendercontrol.html http://translate.google.com.hk/translate?hlzh-CN&slauto&tlen&uhttp%3A%2F%2Fhabrahabr.ru%2Fpost%2F247477%2F http://www.kdab.com/overview-qt3d-2-…

线程的控制(创建、等待、终止)、分离线程

一、线程控制 1、线程&#xff1a;线程是资源调度的基本单位&#xff0c;线程是进程内部的一个执行流&#xff0c;在进程的地址空间内运行。在Linux 下没有真正意义上的线程&#xff0c;线程是用进程模拟的&#xff0c;又被称为轻量级进程。 2、由于同⼀一进程的多个线程共享同…

从netty-example分析Netty组件

分析netty从源码开始 准备工作&#xff1a; 1.下载源代码&#xff1a;https://github.com/netty/netty.git 我下载的版本为4.1 2. eclipse导入maven工程。 netty提供了一个netty-example工程&#xff0c; 分类如下&#xff1a; Fundamental Echo ‐ the very basic client and …

cep

cep posted on 2015-12-16 17:03 秦瑞It行程实录 阅读(...) 评论(...) 编辑 收藏 转载于:https://www.cnblogs.com/ruiy/p/5051673.html

RHCS集群原理概述

一、 什么是RHCSRHCS是Red Hat Cluster Suite的缩写&#xff0c;也就是红帽集群套件&#xff0c;RHCS是一个能够提供高可用性、高可靠性、负载均衡、存储共享且经济廉价的集群工具集合&#xff0c;它将集群系统中三大集群架构融合一体&#xff0c;可以给web应用、数据库应用等提…

Linux学习笔记11——文件I/O之二

一、文件共享 内核使用三种数据结构表示打开的文件&#xff0c;它们之间的关系决定了在文件共享方面一个进程对另一个进程可能产生的影响。 1、每个进程在进程表中都有一个记录项&#xff0c;记录项中包含有一张打开文件描述表  2、内核为所有打开文件维持一张文件表  3、每…

Git Proxy开关

2019独角兽企业重金招聘Python工程师标准>>> 这个是配合ShadowSocks使用的&#xff0c;在~/.bash_aliases或者~/.bash_profile中设置以下代码&#xff1a; #git proxy enable alias gitpe"git config --global http.proxy socks5://127.0.0.1:1080;git config …

平衡二叉查找树插入节点操作( AVLTree ):旋转、调整平衡

AVL树的插入 在向一棵本来高度平衡的AVL树中插入一个新节点时&#xff0c;如果树中某个结点的平衡因子的绝对值 > 1&#xff0c;则出现了不平衡。设新插入结点为P&#xff0c;从结点P到根节点的路径上&#xff0c;每个结点为根的子树的高度都可能增加1&#xff0c;因此在每…