转自周见智
介绍
最近项目中要用到有关几何(Geometry)方面的知识,程序需要判断给定的一条线段(Segment)与指定多边形(Polygon)的位置关系。这种关系分为三种:多边形包含线段、多边形与线段相交以及多边形与线段无关联。
起初我以为.NET类库中已经包含此种判定功能的API,比如类似System.Drawing.Region这些类型,后来等到实际要用的时候才发现根本就没这种“高级”算法。
没办法,只能自己去写代码实现。后来在stackoverflow(链接)上找到了一个解决方案,不过都是源代码,并没有详细的说明。本文参照原作者提供的源码,进行详细的说明。如果你只需要最终答案,可以不用阅读本文所有内容,文章最后会给出判断源代码,很简答使用,就一个方法,代入参数直接调用即可,但如果你想搞清楚怎么回事,那么可以静下心来看看本文全部内容,虽然比较复杂,但是相信一定会有所收获的。
解决思路
线段与多边形的关系只有三种:无关联、相交以及包含。我们可以分以下两步来进行分析:
- 判断线段与多边形的各条边是否相交,若是,则线段与多边形属于“相交”关系;
- 如果线段与多边形的任何边都不相交,那么我们接着判断线段的任意一个端点是否在多边形内部,若是,则整条线段肯定在多边形内(即“包含”关系);若不是,则整条线段肯定都在多边形外部(即“无关联”关系)。
上面两步看似简单,实质相当复杂。判断线段与多边形各条边的关系涉及到了“线段与线段关系的判断”、判断线段任意一个端点是否在多边形内部涉及到了“点与线段关系的判断”,总之,要解决大问题必须先解决一些小问题:
- 点与线段的关系
- 线段与线段的关系
- 点与多边形的关系
下面依次介绍以上三个小问题的解决方法。
问题一:点与线段的关系
点与线段只有两种关系:
- 点在线段上
- 点与线段无关联
这种判断方法很简单,只要我们能确保给定点P的Y坐标在线段AB两个端点的Y坐标之间(或者点P的X坐标在两个端点的X坐标之间也行),并且点P与线段AB任意端点间的斜率与AB线段斜率相等即可说明点P在线段AB上。
如上图,如果Y2<Y<Y1且K==K1,则说明点P在线段AB上;否则,点P与线段AB无关联。
问题二:线段与线段的关系
线段与线段也只有两种关系:
- 两线段相交
- 两线段无关联
这种判断稍微复杂一些,为了更方便计算,涉及到了“平移”、“旋转”等操作。给定线段AB和CD,先将两线段整体平移(注意是整体),让线段AB的A端点与原点(0,0)重合,接着将两线段整体旋转(注意是整体),让线段AB与X轴的正方向重合。
如上图,将任意两线段AB和CD按照“先整体平移,再整体旋转”的顺序操作一遍,最终让线段AB的A端点与原点(0,0)重合,并让线段AB与X轴正方向重合。很显然,任意线段均可以进行以上操作。接下来,再在此基础上进行判断就比较简单了,如果线段CD的两个端点C和D的Y坐标均大于零(分布在第一、二象限)或者均小于零(分布在第三、四象限),那么AB与CD肯定不相交,换句话说,CD的两个端点必须一个在X轴上方另一个在X轴下方时,两条线段才有可能相交。如果线段CD的端点确实是一个在X轴上方一个在X轴下方,接下来再计算直线AB和直线CD(注意这里说的是直线)的交点(这时候两条直线一定有交点,并且交点在X轴上),这里暂定交点为P,如果P在X轴的负方向上(P.X<0),那么说明线段AB和CD不相交,如果P在X轴正方向但是P的X坐标大于线段AB的长度,那么说明线段AB和CD也不相交,其他情况下,线段AB和CD才属于“相交”关系。
问题三:点与多边形的关系
点与多边形有三种关系:
- 点与多边形无关联
- 点在多边形上(某条边上)
- 点在多边形内部
判断点是否在多边形上需要用到解决问题一的方法,即判断点与线段的关系。如果点不在多边形上,那么需要判断它在多边形内部还是外部,这个判断方法说难也不难,说不难也挺难的。事实上,只需要判断点在多边形每条边的左边还是右边(注意这里的左边和右边定义,见下图)
如上图,多边形ABCDE在右侧光源的照射下,它的每条边(如AB、BC等)都会与Y轴上各自的投影(如A`B`、B`C`等)之间形成一个梯形区域,如ABB`A`、BCC`B`等。我们只需要统计给定点P在这些梯形区域中的次数,若点P在某条边对应的梯形区域内,那么计数N加1,最后看N是否为偶数,如果N为偶数(包括0),那么说明点P不在多边形内部;否则,点P在多边形内部。上图中P1的计数N==1(只在ABB`A`内部),所以点P1在多边形ABCDE内部,而点P2的计数N==2(同时在AEE`A`和BCC`B`内部),所以点P2不在多边形ABCDE内部,同理,点P3的计数N==0,所以它也不在多边形内部。