计算机竞赛 图像检索算法

文章目录

  • 1 前言
  • 2 图像检索介绍
    • (1) 无监督图像检索
    • (2) 有监督图像检索
  • 3 图像检索步骤
  • 4 应用实例
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

图像检索算法

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

图像检索:是从一堆图片中找到与待匹配的图像相似的图片,就是以图找图。
网络时代,随着各种社交网络的兴起,网络中图片,视频数据每天都以惊人的速度增长,逐渐形成强大的图像检索数据库。针对这些具有丰富信息的海量图片,如何有效地从巨大的图像数据库中检索出用户需要的图片,成为信息检索领域研究者感兴趣的一个研究方向。


2 图像检索介绍

给定一个包含特定实例(例如特定目标、场景、建筑等)的查询图像,图像检索旨在从数据库图像中找到包含相同实例的图像。但由于不同图像的拍摄视角、光照、或遮挡情况不同,如何设计出能应对这些类内差异的有效且高效的图像检索算法仍是一项研究难题。

在这里插入图片描述

图像检索的典型流程
首先,设法从图像中提取一个合适的图像的表示向量。其次,对这些表示向量用欧式距离或余弦距离进行最近邻搜索以找到相似的图像。最后,可以使用一些后处理技术对检索结果进行微调。可以看出,决定一个图像检索算法性能的关键在于提取的图像表示的好坏。

(1) 无监督图像检索

无监督图像检索旨在不借助其他监督信息,只利用ImageNet预训练模型作为固定的特征提取器来提取图像表示。

直觉思路
由于深度全连接特征提供了对图像内容高层级的描述,且是“天然”的向量形式,一个直觉的思路是直接提取深度全连接特征作为图像的表示向量。但是,由于全连接特征旨在进行图像分类,缺乏对图像细节的描述,该思路的检索准确率一般。

利用深度卷积特征 由于深度卷积特征具有更好的细节信息,并且可以处理任意大小的图像输入,目前的主流方法是提取深度卷积特征,并通过加权全局求和汇合(sum-
pooling)得到图像的表示向量。其中,权重体现了不同位置特征的重要性,可以有空间方向权重和通道方向权重两种形式。

CroW
深度卷积特征是一个分布式的表示。虽然一个神经元的响应值对判断对应区域是否包含目标用处不大,但如果多个神经元同时有很大的响应值,那么该区域很有可能包含该目标。因此,CroW把特征图沿通道方向相加,得到一张二维聚合图,并将其归一化并根号规范化的结果作为空间权重。CroW的通道权重根据特征图的稀疏性定义,其类似于自然语言处理中TF-
IDF特征中的IDF特征,用于提升不常出现但具有判别能力的特征。

Class weighted features
该方法试图结合网络的类别预测信息来使空间权重更具判别能力。具体来说,其利用CAM来获取预训练网络中对应各类别的最具代表性区域的语义信息,进而将归一化的CAM结果作为空间权重。

PWA
PWA发现,深度卷积特征的不同通道对应于目标不同部位的响应。因此,PWA选取一系列有判别能力的特征图,将其归一化之后的结果作为空间权重进行汇合,并将其结果级联起来作为最终图像表示。

在这里插入图片描述

(2) 有监督图像检索

在这里插入图片描述

有监督图像检索首先将ImageNet预训练模型在一个额外的训练数据集上进行微调,之后再从这个微调过的模型中提取图像表示。为了取得更好的效果,用于微调的训练数据集通常和要用于检索的数据集比较相似。此外,可以用候选区域网络提取图像中可能包含目标的前景区域。

孪生网络(siamese network)
和人脸识别的思路类似,使用二元或三元(+±)输入,训练模型使相似样本之间的距离尽可能小,而不相似样本之间的距离尽可能大。

3 图像检索步骤

图像检索技术主要包含几个步骤,分别为:

  • 输入图片

  • 特征提取

  • 度量学习

  • 重排序

  • 特征提取:即将图片数据进行降维,提取数据的判别性信息,一般将一张图片降维为一个向量;

  • 度量学习:一般利用度量函数,计算图片特征之间的距离,作为loss,训练特征提取网络,使得相似图片提取的特征相似,不同类的图片提取的特征差异性较大。

  • 重排序:利用数据间的流形关系,对度量结果进行重新排序,从而得到更好的检索结果。

在这里插入图片描述

4 应用实例

学长在这做了个图像检索器的demo,效果如下

工程代码:
在这里插入图片描述

关键代码:

# _*_ coding=utf-8 _*_from math import sqrtimport cv2import timeimport osimport numpy as npfrom scipy.stats.stats import  pearsonr#配置项文件import  pymysqlfrom config import *from mysql_config import *from utils import getColorVec, Bdistancedb = pymysql.connect(DB_addr, DB_user, DB_passwod, DB_name )def query(filename):if filename=="":fileToProcess=input("输入子文件夹中图片的文件名")else:fileToProcess=filename#fileToProcess="45.jpg"if(not os.path.exists(FOLDER+fileToProcess)):raise RuntimeError("文件不存在")start_time=time.time()img=cv2.imread(FOLDER+fileToProcess)colorVec1=getColorVec(img)#流式游标处理conn = pymysql.connect(host=DB_addr, user=DB_user, passwd=DB_passwod, db=DB_name, port=3306,charset='utf8', cursorclass = pymysql.cursors.SSCursor)leastNearRInFive=0Rlist=[]namelist=[]init_str="k"for one in range(0, MATCH_ITEM_NUM):Rlist.append(0)namelist.append(init_str)with conn.cursor() as cursor:cursor.execute("select name, featureValue from "+TABLE_NAME+" order by name")row=cursor.fetchone()count=1while row is not None:if row[0] == fileToProcess:row=cursor.fetchone()continuecolorVec2=row[1].split(',')colorVec2=list(map(eval, colorVec2))R2=pearsonr(colorVec1, colorVec2)rela=R2[0]#R2=Bdistance(colorVec1, colorVec2)#rela=R2#忽略正负性#if abs(rela)>abs(leastNearRInFive):#考虑正负if rela>leastNearRInFive:index=0for one in Rlist:if rela >one:Rlist.insert(index, rela)Rlist.pop(MATCH_ITEM_NUM)namelist.insert(index, row[0])namelist.pop(MATCH_ITEM_NUM)leastNearRInFive=Rlist[MATCH_ITEM_NUM-1]breakindex+=1count+=1row=cursor.fetchone()end_time=time.time()time_cost=end_time-start_timeprint("spend ", time_cost, ' s')for one in range(0, MATCH_ITEM_NUM):print(namelist[one]+"\t\t"+str(float(Rlist[one])))if __name__ == '__main__':#WriteDb()#exit()query("")

效果
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/44977.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【数理知识】向量的坐标基表示法,Matlab 代码验证

序号内容1【数理知识】向量的坐标基表示法,Matlab 代码验证2【数理知识】向量与基的内积,Matlab 代码验证 文章目录 1. 向量的坐标基表示2. 二维平面向量举例3. Matlab 代码验证Ref 1. 向量的坐标基表示 假设空间中存在一个向量 a ⃗ \vec{a} a &#…

Vite更新依赖缓存失败,强制更新依赖缓存

使用vitets开发一段时间了,感觉并不是想象中的好用,特别是出现些稀奇古怪的问题不好解决,比如下面这个问题 上午9:50:08 [vite] error while updating dependencies: Error: ENOENT: no such file or directory, open E:/workspace-dir/node…

ansible(1)-- 部署ansible连接被控端

目录 一、部署ansible 1.1 安装 1.2 测试连接 192.168.136.55 ansible 192.168.136.56被控端 一、部署ansible 1.1 安装 zabbix-s只是主机名,不用在意,更好该主机也安装了zabbix,不好更改。 下载阿里云epel源 #安装阿里云的epel源&#…

计算机网络(9) --- 数据链路层与MAC帧

计算机网络(8) --- IP与IP协议_哈里沃克的博客-CSDN博客IP与IP协议https://blog.csdn.net/m0_63488627/article/details/132155460?spm1001.2014.3001.5502 目录 1.MAC帧 1.MAC地址 2.MAC帧报头 3.资源碰撞 4.MTU 1.对IP协议的影响 2.对UDP协议…

esp8266+电压检测模块检测电池电压

请注意 esp8266的ADC引脚受wifi模块影响,会导致不准确,具体请查看这里:https://github.com/esp8266/Arduino/issues/2070 简单说一下解决方案: ①如果不是频繁的读取数据,可以在wifi连接前读取数据然后存储到缓存&…

【Visual Studio Code】--- Win11 配置 VS Code 为中文 超详细

Win11 配置 VS Code 为中文 超详细 一、概述二、重要提示二、配置 VS Code 为中文 一、概述 一个好的文章能够帮助开发者完成更便捷、更快速的开发。书山有路勤为径,学海无涯苦作舟。我是秋知叶i、期望每一个阅读了我的文章的开发者都能够有所成长。 二、重要提示…

RT-Thread 的环形缓冲区 ---- 镜像指示位

可以看一下这篇我写的博客,了解一下大概: RingBuffer 环形缓冲区----镜像指示位_呵呵哒( ̄▽ ̄)"的博客-CSDN博客https://blog.csdn.net/weixin_41987016/article/details/132340883?spm1001.2014.3001.5501 【回顾】缓冲区…

Mock平台-08开发:项目管理(四)编辑功能和Component抽离

【Mock平台】为系列测试开发教程,从0到1编码带你一步步使用Spring Boot 和 Antd React框架完成搭建一个测试工具平台,希望作为一个实战项目对各位的测试开发学习之路有帮助,大奇一个专注测试技术干货原创与分享的家伙。 本篇重点:…

MetaMask Mobile +Chrome DevTools 调试Web3应用教程

注:本教程来源网络,根据项目做的整理 写好了WEB3应用,在本地调试用得好好的,但是用钱包软件访问就报莫名的错,但是又不知道是什么原因,排查的过程非常浪费时间 。 因此在本地同一局域网进行调试就非常有必要…

mybatis-plus--配置-(sql)日志输出-自动填充-分页-多数据源-逻辑删除

写在前面: 本文主要介绍mybatis-plus的配置,以后在有的时候在补充。欢迎交流。 文章目录 日志输出自动填充分页全局字段配置多数据源 日志输出 调试的时候需要看执行的sql,这时候就很需要日志来记录查看了。 mybatis-plus的日志配置在yml…

​8th参考文献:[8]许少辉.乡村振兴战略下传统村落文化旅游设计[M]北京:中国建筑出版传媒,2022.

​8th参考文献:[8]许少辉.乡村振兴战略下传统村落文化旅游设计[M]北京:中国建筑出版传媒,2022&…

RK3588平台开发系列讲解(AI 篇)RKNN C API 详细说明

文章目录 一、API 硬件平台支持说明二、API 函数介绍2.1、rknn_init2.2、rknn_destroy2.3、rknn_query2.4、rknn_inputs_set2.5、rknn_run2.6、rknn_outputs_get2.7、rknn_outputs_release沉淀、分享、成长,让自己和他人都能有所收获!😄 📢本篇章主要讲解 RKNN C API 详细…

springboot 项目日志配置文件详解

spring boot 项目指定 日志配置文件 在Spring Boot项目中,可以通过在application.properties或application.yml文件中指定日志配置文件来配置日志。 1. 使用application.properties文件: 在application.properties中,您可以使用以下属性来…

【ARM】Day4 点亮LED灯

1. 思维导图 2. 自己编写代码实现三盏灯点亮 .text .global _start _start: /**********LED1,LED2,LED3点灯:PE10,PF10,PE8**************/ RCC_INIT:使能GPIOE组/GPIOF组控制器,通过RXCC_MP_AHB4ENSETR设置第[5:4]位写1,地址:0x50000A28[5:4]1ldr r0,0x50000A28 …

01_Redis单线程与多线程

01——Redis单线程与多线程 一、Redis是单线程还是多线程 在谈Redis的单线程或多线程时,需要根据版本来区分。 在redis 3.x之前,redis是单线程的从redis 4.x开始,redis引入多线程。处理客户端请求时,使用单线程;在异…

B-树和B+树的区别

B-树和B树的区别 一、B-tree数据存储 在下图中 P 代表的是指针,指向的是下一个磁盘块。在第一个节点中的 16、24 就是代表我们的 key 值是什么。date 就是这个 key 值对应的这一行记录是什么。 假设寻找 key 为 33 的这条记录,33 在 16 和 34 中间&am…

QT TLS initialization failed问题(已解决) QT基础入门【网络编程】openssl

问题: qt.network.ssl: QSslSocket::connectToHostEncrypted: TLS initialization failed 这个问题的出现主要是使用了https请求:HTTPS ≈ HTTP + SSL,即有了加密层的HTTP 所以Qt 组件库需要OpenSSL dll 文件支持HTTPS 解决: 1.加入以下两行代码获取QT是否支持opensll以…

如何在出差期间远程访问企业ERP系统?内网穿透解决您的难题!

文章目录 概述1.查看象过河服务端端口2.内网穿透3. 异地公网连接4. 固定公网地址4.1 保留一个固定TCP地址4.2 配置固定TCP地址 5. 使用固定地址连接 概述 ERP系统对于企业来说重要性不言而喻,不管是财务、生产、销售还是采购,都需要用到ERP系统来协助。…

SharkTeam:Worldcoin运营数据及业务安全分析

Worldcoin的白皮书中声明,Worldcoin旨在构建一个连接全球人类的新型数字经济系统,由OpenAI创始人Sam Altman于2020年发起。通过区块链技术在Web3世界中实现更加公平、开放和包容的经济体系,并将所有权赋予每个人。并且希望让全世界每一个人都…

Web3和去中心化:互联网的下一个演化阶段

文章目录 Web3和去中心化的定义Web3:去中心化: 为什么Web3和去中心化如此重要?数据隐私和安全:去中心化的创新:去除中间商: Web3和去中心化的应用领域去中心化金融(DeFi)&#xff1a…