(十三) 深入浅出TCPIP之TCP套接字参数

 

专栏其他文章:

 

理论篇:

(一)深入浅出TCPIP之理解TCP报文格式和交互流程

  (二)深入浅出TCPIP之再识TCP,理解TCP三次握手(上)

  (三)深入浅出TCPIP之再识TCP,理解TCP四次挥手(上)

  (四)深入浅出TCPIP之TCP三次握手和四次挥手(下)的抓包分析

  (五)深入浅出TCPIP之TCP流量控制

  (六)深入浅出TCPIP之TCP拥塞控制

  (七)深入浅出TCPIP之深入浅出TCPIP之TCP重传机制

 (八)深入浅出TCPIP之TCP长连接与短连接详解

 (九)深入浅出TCPIP之网络同步异步

 (十)深入浅出TCPIP之网络阻塞和非阻塞

(十一)深入浅出TCPIP之TCP粘包问题

  (十二)深入浅出TCPIP之Nagle算法

  (十三) 深入浅出TCPIP之TCP套接字参数

  (十四)深入浅出TCPIP之初识UDP理解报文格式和交互流程

  (十五)非常全面的TCPIP面试宝典-进入大厂必备总结

 (十六)深入浅出TCPIP之Hello CDN

 ....

(二十)深入浅出TCPIP之epoll的一些思考

实践篇:

   深入浅出TCPIP之实战篇—用c++开发一个http服务器(二十一)

其他实践篇+游戏开发中的网络问题疑难杂症解读 正在完善。。。

Socket描述符选项

#include <sys/socket.h>

int setsockopt( int socket, int level, int option_name,const void *option_value, size_t ,ption_len);

  第一个参数socket是套接字描述符。第二个参数level是被设置的选项的级别,如果想要在套接字级别上设置选项,就必须把level设置为 SOL_SOCKET。 option_name指定准备设置的选项,option_name可以有哪些取值,这取决于level,以linux 2.6内核为例(在不同的平台上,这种关系可能会有不同),在套接字级别上(SOL_SOCKET),option_name可以有以下取 值:

  1.     SO_DEBUG,打开或关闭调试信息。
        当option_value不等于0时,打开调试信息,否则,关闭调试信息。它实际所做的工作是在sock->sk->sk_flag中置 SOCK_DBG(第10)位,或清SOCK_DBG位。
  1.     SO_REUSEADDR,打开或关闭地址复用功能。
        当option_value不等于0时,打开,否则,关闭。它实际所做的工作是置sock->sk->sk_reuse为1或0。
  1.     SO_DONTROUTE,打开或关闭路由查找功能。
        当option_value不等于0时,打开,否则,关闭。它实际所做的工作是在sock->sk->sk_flag中置或清SOCK_LOCALROUTE位。
  1.     SO_BROADCAST,允许或禁止发送广播数据。
        当option_value不等于0时,允许,否则,禁止。它实际所做的工作是在sock->sk->sk_flag中置或清SOCK_BROADCAST位。
  1.     SO_SNDBUF,设置发送缓冲区的大小。
        发送缓冲区的大小是有上下限的,其上限为256 * (sizeof(struct sk_buff) + 256),下限为2048字节。该操作将sock->sk->sk_sndbuf设置为val * 2,之所以要乘以2,是防
    止大数据量的发送,突然导致缓冲区溢出。最后,该操作完成后,因为对发送缓冲的大小 作了改变,要检查sleep队列,如果有进程正在等待写,将它们唤醒。
  1.     SO_RCVBUF,设置接收缓冲区的大小。
        接收缓冲区大小的上下限分别是:256 * (sizeof(struct sk_buff) + 256)和256字节。该操作将sock->sk->sk_rcvbuf设置为val * 2。
  2.     SO_KEEPALIVE,套接字保活。
        如果协议是TCP,并且当前的套接字状态不是侦听(listen)或关闭(close),那么,当option_value不是零时,启用TCP保活定时 器,否则关闭保活定时器。对于所有协议,该操
    作都会根据option_value置或清 sock->sk->sk_flag中的 SOCK_KEEPOPEN位。
  3.     SO_OOBINLINE,紧急数据放入普通数据流。
        该操作根据option_value的值置或清sock->sk->sk_flag中的SOCK_URGINLINE位。
  4.     SO_NO_CHECK,打开或关闭校验和。
        该操作根据option_value的值,设置sock->sk->sk_no_check。
  5.     SO_PRIORITY,设置在套接字发送的所有包的协议定义优先权。Linux通过这一值来排列网络队列。
        这个值在0到6之间(包括0和6),由option_value指定。赋给sock->sk->sk_priority。
  1.     SO_LINGER,如果选择此选项, close或 shutdown将等到所有套接字里排队的消息成功发送或到达延迟时间后>才会返回. 否则, 调用将立即返回。
        该选项的参数(option_value)是一个linger结构:
            struct linger {
                int   l_onoff;   
                int   l_linger;  
            };
    如果linger.l_onoff值为0(关闭),则清 sock->sk->sk_flag中的SOCK_LINGER位;否则,置该位,并赋sk->sk_lingertime值为 linger.l_linger。
  1.     SO_PASSCRED,允许或禁止SCM_CREDENTIALS 控制消息的接收。
        该选项根据option_value的值,清或置sock->sk->sk_flag中的SOCK_PASSCRED位。
  2.     SO_TIMESTAMP,打开或关闭数据报中的时间戳接收。
        该选项根据option_value的值,清或置sock->sk->sk_flag中的SOCK_RCVTSTAMP位,如果打开,则还需设sock->sk->sk_flag中的SOCK_TIMESTAMP位,同时,将全局变量
    netstamp_needed加1。
  3.     SO_RCVLOWAT,设置接收数据前的缓冲区内的最小字节数。
        在Linux中,缓冲区内的最小字节数是固定的,为1。即将sock->sk->sk_rcvlowat固定赋值为1。
  1.     SO_RCVTIMEO,设置接收超时时间。
        该选项最终将接收超时时间赋给sock->sk->sk_rcvtimeo。
  1.     SO_SNDTIMEO,设置发送超时时间。
        该选项最终将发送超时时间赋给sock->sk->sk_sndtimeo。
  2.     SO_BINDTODEVICE,将套接字绑定到一个特定的设备上。
        该选项最终将设备赋给sock->sk->sk_bound_dev_if。
  3.  SO_ATTACH_FILTER和SO_DETACH_FILTER。
        关于数据包过滤,它们最终会影响sk->sk_filter。
        

以上所介绍的都是在SOL_SOCKET层的一些套接字选项,如果超出这个范围, 给出一些不在这一level的选项作为参数,最终会得到- ENOPROTOOPT的返回值。但以上的分析仅限

于这些选项对sock-sk的值的影响,这些选项真正如何发挥作用,我们的探索道路 将漫漫其修远。   

1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:

BOOL bReuseaddr=TRUE;
setsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL)); 

2. 如果要已经处于连接状态的soket在调用closesocket后强制关闭,不经历
TIME_WAIT的过程:

BOOL bDontLinger = FALSE;
setsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL)); 

3.在send(),recv()过程中有时由于网络状况等原因,发收不能预期进行,而设置收发时限:

int nNetTimeout=1000;//1秒
//发送时限
setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int));
//接收时限
setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int)); 

 

4.在send()的时候,返回的是实际发送出去的字节(同步)或发送到socket缓冲区的字节
(异步);系统默认的状态发送和接收一次为8688字节(约为8.5K);在实际的过程中发送数据
和接收数据量比较大,可以设置socket缓冲区,而避免了send(),recv()不断的循环收发:

 

// 接收缓冲区
int nRecvBuf=32*1024;//设置为32K
setsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int));
//发送缓冲区
int nSendBuf=32*1024;//设置为32K
setsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int)); 

 

5. 如果在发送数据的时,希望不经历由系统缓冲区到socket缓冲区的拷贝而影响程序的性能:

int nZero=0;
setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero)); 
6.同上在recv()完成上述功能(默认情况是将socket缓冲区的内容拷贝到系统缓冲区):
int nZero=0;
setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int)); 
7.一般在发送UDP数据报的时候,希望该socket发送的数据具有广播特性:
BOOL bBroadcast=TRUE;
setsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL));
8.在client连接服务器过程中,如果处于非阻塞模式下的socket在connect()的过程中可
以设置connect()延时,直到accpet()被呼叫(本函数设置只有在非阻塞的过程中有显著的
作用,在阻塞的函数调用中作用不大)
BOOL bConditionalAccept=TRUE;
setsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL));

9.如果在发送数据的过程中(send()没有完成,还有数据没发送)而调用了closesocket(),以前我们
一般采取的措施是"从容关闭"shutdown(s,SD_BOTH),但是数据是肯定丢失了,如何设置让程序满足具体应用的要求(即让没发完的数据发送出去后在关闭socket)?

复制代码

struct linger {
u_short l_onoff;
u_short l_linger;
};
linger m_sLinger;
m_sLinger.l_onoff=1;//(在closesocket()调用,但是还有数据没发送完毕的时候容许逗留)
// 如果m_sLinger.l_onoff=0;则功能和2.)作用相同;
m_sLinger.l_linger=5;//(容许逗留的时间为5秒)
setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger));

复制代码

 

设置套接口的选项。

   #include <winsock.h>
   int PASCAL FAR setsockopt( SOCKET s, int level, int optname,const char FAR* optval, int optlen);

  s:标识一个套接口的描述字。level:选项定义的层次;目前仅支持SOL_SOCKET和IPPROTO_TCP层次。optname:需设置的选项。optval:指针,指向存放选项值的缓冲区。optlen:optval缓冲区的长度。

注释:
  setsockopt()函数用于任意类型、任意状态套接口的设置选项值。尽管在不同协议层上存在选项,但本函数仅定义了最高的“套接口”层次上的选项。选项影响套接口的操作,诸如加急数据是否在普通数据流中接收,广播数据是否可以从套接口发送等等。
  有两种套接口的选项:一种是布尔型选项,允许或禁止一种特性;另一种是整形或结构选项。允许一个布尔型选项,则将optval指向非零整形数;禁止一个选项optval指向一个等于零的整形数。对于布尔型选项,optlen应等于sizeof(int);对其他选项,optval指向包含所需选项的整形数或结构,而optlen则为整形数或结构的长度。SO_LINGER选项用于控制下述情况的行动:套接口上有排队的待发送数据,且 closesocket()调用已执行。参见closesocket()函数中关于SO_LINGER选项对closesocket()语义的影响。应用程序通过创建一个linger结构来设置相应的操作特性:

struct linger {int l_onoff;int l_linger;
};

 

  为了允许SO_LINGER,应用程序应将l_onoff设为非零,将l_linger设为零或需要的超时值(以秒为单位),然后调用setsockopt()。为了允许SO_DONTLINGER(亦即禁止SO_LINGER),l_onoff应设为零,然后调用setsockopt()。

  缺省条件下,一个套接口不能与一个已在使用中的本地地址捆绑(参见bind())。但有时会需要“重用”地址。因为每一个连接都由本地地址和远端地址的组合唯一确定,所以只要远端地址不同,两个套接口与一个地址捆绑并无大碍。为了通知WINDOWS套接口实现不要因为一个地址已被一个套接口使用就不让它与另一个套接口捆绑,应用程序可在bind()调用前先设置SO_REUSEADDR选项。请注意仅在bind()调用时该选项才被解释;故此无需(但也无害)将一个不会共用地址的套接口设置该选项,或者在bind()对这个或其他套接口无影响情况下设置或清除这一选项。
  一个应用程序可以通过打开SO_KEEPALIVE选项,使得WINDOWS套接口实现在TCP连接情况下允许使用“保持活动”包。一个WINDOWS套接口实现并不是必需支持“保持活动”,但是如果支持的话,具体的语义将与实现有关,应遵守RFC1122“Internet主机要求-通讯层”中第 4.2.3.6节的规范。如果有关连接由于“保持活动”而失效,则进行中的任何对该套接口的调用都将以WSAENETRESET错误返回,后续的任何调用将以WSAENOTCONN错误返回。
  TCP_NODELAY选项禁止Nagle算法。Nagle算法通过将未确认的数据存入缓冲区直到蓄足一个包一起发送的方法,来减少主机发送的零碎小数据包的数目。但对于某些应用来说,这种算法将降低系统性能。所以TCP_NODELAY可用来将此算法关闭。应用程序编写者只有在确切了解它的效果并确实需要的情况下,才设置TCP_NODELAY选项,因为设置后对网络性能有明显的负面影响。TCP_NODELAY是唯一使用IPPROTO_TCP层的选项,其他所有选项都使用SOL_SOCKET层。
  如果设置了SO_DEBUG选项,WINDOWS套接口供应商被鼓励(但不是必需)提供输出相应的调试信息。但产生调试信息的机制以及调试信息的形式已超出本规范的讨论范围。


setsockopt()支持下列选项。其中“类型”表明optval所指数据的类型。

选项        类型   意义
SO_BROADCAST BOOL允许套接口传送广播信息。
SO_DEBUG BOOL记录调试信息。
SO_DONTLINER BOOL不要因为数据未发送就阻塞关闭操作。设置本选项相当于将SO_LINGER的l_onoff元素置为零。
SO_DONTROUTE BOOL 禁止选径;直接传送。
SO_KEEPALIVE BOOL 发送“保持活动”包。
SO_LINGER  struct linger FAR*如关闭时有未发送数据,则逗留。
SO_OOBINLINE BOOL在常规数据流中接收带外数据。
SO_RCVBUF int 为接收确定缓冲区大小。
SO_REUSEADDR BOOL允许套接口和一个已在使用中的地址捆绑(参见bind())。
SO_SNDBUF int指定发送缓冲区大小。
TCP_NODELAY BOOL 禁止发送合并的Nagle算法。


setsockopt()不支持的BSD选项有:

选项名  类型 意义
SO_ACCEPTCONNBOOL 套接口在监听。
SO_ERROR int 获取错误状态并清除。
SO_RCVLOWAT int 接收低级水印。
SO_RCVTIMEOint 接收超时。
SO_SNDLOWAT int 发送低级水印。
SO_SNDTIMEO int 发送超时。
SO_TYPE     int 套接口类型。
IP_OPTIONS     在IP头中设置选项。


返回值:
     若无错误发生,setsockopt()返回0。否则的话,返回SOCKET_ERROR错误,应用程序可通过WSAGetLastError()获取相应错误代码。
错误代码:

  • WSANOTINITIALISED:在使用此API之前应首先成功地调用WSAStartup()。
  • WSAENETDOWN:WINDOWS套接口实现检测到网络子系统失效。
  • WSAEFAULT:optval不是进程地址空间中的一个有效部分。
  • WSAEINPROGRESS:一个阻塞的WINDOWS套接口调用正在运行中。
  • WSAEINVAL:level值非法,或optval中的信息非法。
  • WSAENETRESET:当SO_KEEPALIVE设置后连接超时。
  • WSAENOPROTOOPT:未知或不支持选项。其中,SOCK_STREAM类型的套接口不支持SO_BROADCAST选项,SOCK_DGRAM 类型的套接口不支持SO_DONTLINGER 、SO_KEEPALIVE、SO_LINGER和SO_OOBINLINE选项。
  • WSAENOTCONN:当设置SO_KEEPALIVE后连接被复位。
  • WSAENOTSOCK:描述字不是一个套接口。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/444577.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux必懂知识大总结(上)

CPU top top&#xff1a;查看每个进程的情况 在top模式下&#xff0c;输入1&#xff1a;查看每个CPU的性能数据&#xff0c;注意观察是否有CPU100%占用率 CPU参数含义&#xff1a; 1&#xff09;us过高表示Java应用程序消耗了大量CPU&#xff0c;需要定位是哪一个线程&#x…

如何抓住QQ小游戏买量红利:休闲与内购小游戏买量优化方法分享

2019年5月&#xff0c;Qzone小游戏、玩一玩整合升级为全新QQ小游戏平台&#xff0c;其以开放的社交生态和关系链&#xff0c;为开发者带来了巨大的流量红利。 为了帮助更多开发者适应和了解新市场。本文将介绍QQ小游戏投放规模现状以及各项扶持政策&#xff0c;并解读轻度小游…

(一)容器从入门到深入-容器和镜像

一、容器与镜像 什么是容器&#xff1f; 在介绍容器的具体概念之前&#xff0c;先简单回顾一下操作系统是如何管理进程的。 首先&#xff0c;当我们登录到操作系统之后&#xff0c;可以通过 ps 等操作看到各式各样的进程&#xff0c;这些进程包括系统自带的服务和用户的应用…

记一次海外大型SLG游戏服务器进程被OOM的修复经历

事情经过 最近刚接手一个多次获得海外GooglePlay推荐的SLG的游戏项目,服务器是java的netty框架写的,客户端是cocos lua。 好吧既然服务器进程运行在jvm之上,吃内存倒是挺厉害的,我一个16G内存的服务器被吃的满满的,这个时候为了解决内存不足,我开启了4G的虚拟内存,方法…

(一)nodejs循序渐进-nodejs环境安装(基础篇)

目录 Node Node的优点 Node.js 安装配置 使用nvm管理不同版本的 node 与 npm nvm 与 n 的区别 卸载全局安装的 node/npm Windows 安装 Linux 安装 安装多版本 node/npm 在不同版本间切换 列出已安装实例 在多环境中&#xff0c;npm该如何使用呢&#xff1f; 其他命…

(二)nodejs循序渐进-nodejs基本类型和循环条件语法篇(基础篇)

目录 入门之helloworld 进阶之helloworld http服务器 步骤一、引入 required 模块 步骤二、创建服务器 基本语法篇 变量声明 基础类型 if else 循环语句 for for ... in while do和do while 运算符 加减乘除 , , !, ! typeof null&#xff0c;undefine…

(七)nodejs循序渐进-模块系统(进阶篇)

模块系统 为了让Node.js的文件可以相互调用&#xff0c;Node.js提供了一个简单的模块系统。 模块是Node.js 应用程序的基本组成部分&#xff0c;文件和模块是一一对应的。换言之&#xff0c;一个 Node.js 文件就是一个模块&#xff0c;这个文件可能是JavaScript 代码、JSON 或…

(八)nodejs循序渐进-事件驱动(进阶篇)

事件驱动程序 Node.js 使用事件驱动模型&#xff0c;当web server接收到请求&#xff0c;就把它关闭然后进行处理&#xff0c;然后去服务下一个web请求。 当这个请求完成&#xff0c;它被放回处理队列&#xff0c;当到达队列开头&#xff0c;这个结果被返回给用户。 这个模型…

leetcode304. 二维区域和检索 - 矩阵不可变

给定一个二维矩阵&#xff0c;计算其子矩形范围内元素的总和&#xff0c;该子矩阵的左上角为 (row1, col1) &#xff0c;右下角为 (row2, col2)。 上图子矩阵左上角 (row1, col1) (2, 1) &#xff0c;右下角(row2, col2) (4, 3)&#xff0c;该子矩形内元素的总和为 8。 示例…

(九)nodejs循序渐进-Express框架(进阶篇)

Express 框架 Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用&#xff0c;和丰富的 HTTP 工具。 使用 Express 可以快速地搭建一个完整功能的网站。 Express 框架核心特性&#xff1a; 可以设置中间件来响应 HTTP 请求。 定…

leetcode326. 3的幂 如此6的操作你想到了吗

给定一个整数&#xff0c;写一个函数来判断它是否是 3 的幂次方。 示例 1: 输入: 27 输出: true 示例 2: 输入: 0 输出: false 示例 3: 输入: 9 输出: true 示例 4: 输入: 45 输出: false 进阶&#xff1a; 你能不使用循环或者递归来完成本题吗&#xff1f; 注意最后一句…

(十)nodejs循序渐进-高性能游戏服务器框架pomelo之介绍和安装篇

目录 Pomelo 安装Pomelo 创建demoserver项目 pomelo命令 项目结构说明 pomelo框架 架构 服务器实现 客户端请求与响应、广播的抽象介绍 Pomelo pomelo是一个快速、可扩展、Node.js分布式游戏服务器框架&#xff0c;对游戏服务器开发感兴趣的同学可以关注关注。 之前…

(十二)nodejs循序渐进-高性能游戏服务器框架pomelo之创建一个游戏聊天服务器

上个章节我们简单介绍了下pomelo的安装和目录结构&#xff0c;有读者可能觉得有点吃不消&#xff0c;为什么不再深入讲一讲目录结构和里边的库&#xff0c;这里我就不费口舌了&#xff0c;大家可以去官网参考文档说明&#xff0c;本文只告诉大家如何利用这个框架来开发自己的东…

(十三)nodejs循序渐进-高性能游戏服务器框架pomelo之扩展聊天服务器为机器人自动聊天

聊天服务器扩展 大家在上一篇文章里相信已经学会了pomelo框架的基本用法了&#xff0c;那么我们在上一篇文章的代码基础上继续扩展&#xff0c;丰富系统&#xff0c;另外也熟悉下他的更多的用法&#xff0c;这一节我将扩展它&#xff1a;增加一个机器人自动聊天的功能。 目的…

leetcode1290. 二进制链表转整数 刷新认知,最简单算法题

给你一个单链表的引用结点 head。链表中每个结点的值不是 0 就是 1。已知此链表是一个整数数字的二进制表示形式。 请你返回该链表所表示数字的 十进制值 。 示例 1&#xff1a; 输入&#xff1a;head [1,0,1] 输出&#xff1a;5 解释&#xff1a;二进制数 (101) 转化为十进…

Redis:02---安装Redis(Linux+Windows+Docker)

Linux安装&#xff1a;一、安装方式1&#xff08;下载源码编译安装&#xff09;第一步&#xff1a;从下面的网址中下载Redis最新稳定版本的源代码sudo wget http://download.redis.io/redis-stable.tar.gz第二步&#xff1a;下载完之后解压&#xff0c;建立一个软链接指向于red…

C++: 06---构造函数析构函数

拷贝构造函数: 用一个已经存在的对象来生成一个相同类型的新对象。(浅拷贝)默认的拷贝构造函数: 如果自定义了拷贝构造函数,编译器就不在生成默认的拷贝构造函数。 如果没有自定义拷贝构造函数,但在代码中用到了拷贝构造函数,编译器会生成默认…

C++:11---友元函数、友元类

一、友元(friend) 概念:通过友元,打破了类的封装性,可以访问类内的所有成员分类:友元函数、友元类二、友元函数 概念:友元函数是一个普通函数,不属于类,但需要在类内表明友元关系 友元函数可访问类内所有成员,但类不可以访问友元函数…

C++:12---运算符重载

一、概念 对已有的运算符重新进行定义,赋予其另一种功能,以适应不同的数据类型重载的运算符是具有特殊名字的函数,该函数也有返回值、参数列表、函数体二、运算符重载的3种实现方式 成员函数:私有、公有、保护都可以友元函数:同上全局函数:只能访问公有的三、运算符重载的…

Redis:03---Redis的启动与配置参数大全

一、Redis的可执行文件当我们安装完Redis之后&#xff0c;src和/usr/local/bin目录下提供了下面这些可执行程序&#xff0c;我们称之为Redis Shell&#xff1a;redis-serverRedis服务器redis-cliRedis命令行客户端redis-benchmarkRedis性能测试工具redis-check-aofRedis AOF持久…