(六)nodejs循序渐进-数据流和文件操作(基础篇)

Buffer 

JS 语言自身只有字符串数据类型,没有二进制数据类型,因此 NodeJS 提供了一个与 String 对等的全局构造函数 Buffer 来提供对二进制数据的操作。除了可以读取文件得到 Buffer 的实例外,还能够直接构造,Buffer 与字符串类似,除了可以用.length属性得到字节长度外,还可以用[index]方式读取指定位置的字节。例如:

var bin = new Buffer([ 0x68, 0x65, 0x6c, 0x6c, 0x6f ]);

 

  Buffer 与字符串能够互相转化,例如可以使用指定编码将二进制数据转化为字符串:

var str = bin.toString('utf-8'); // => "hello"

或者反过来,将字符串转换为指定编码下的二进制数据:

var bin = new Buffer('hello', 'utf-8'); // => <Buffer 68 65 6c 6c 6f>

Buffer 与字符串有一个重要区别。字符串是只读的,并且对字符串的任何修改得到的都是一个新字符串,原字符串保持不变。至于 Buffer,更像是可以做指针操作的 C 语言数组。例如,可以用[index]方式直接修改某个位置的字节。

bin[0] = 0x48;

.slice方法也不是返回一个新的 Buffer,而更像是返回了指向原 Buffer 中间的某个位置的指针,如下所示。

[ 0x68, 0x65, 0x6c, 0x6c, 0x6f ]^           ^|           |bin     bin.slice(2)

因此对.slice方法返回的 Buffer 的修改会作用于原 Buffer,例如:

var bin = new Buffer([ 0x68, 0x65, 0x6c, 0x6c, 0x6f ]);
var sub = bin.slice(2);sub[0] = 0x65;
console.log(bin); // => <Buffer 68 65 65 6c 6f>

也因此,如果想要拷贝一份 Buffer,得首先创建一个新的 Buffer,并通过.copy方法把原 Buffer 中的数据复制过去。这个类似于申请一块新的内存,并把已有内存中的数据复制过去。以下是一个例子。

var bin = new Buffer([ 0x68, 0x65, 0x6c, 0x6c, 0x6f ]);
var dup = new Buffer(bin.length);bin.copy(dup);
dup[0] = 0x48;
console.log(bin); // => <Buffer 68 65 6c 6c 6f>
console.log(dup); // => <Buffer 48 65 65 6c 6f>

总之,Buffer 将 JS 的数据处理能力从字符串扩展到了任意二进制数据。

Stream(数据流)

当内存中无法一次装下需要处理的数据时,或者一边读取一边处理更加高效时,我们就需要用到数据流。NodeJS中通过各种 Stream 来提供对数据流的操作。

以上边的大文件拷贝程序为例,我们可以为数据来源创建一个只读数据流,示例如下:

var rs = fs.createReadStream(pathname);rs.on('data', function (chunk) {doSomething(chunk);
});rs.on('end', function () {cleanUp();
});

注意: Stream 基于事件机制工作,所有 Stream 的实例都继承于 NodeJS 提供的 EventEmitter。

上边的代码中 data 事件会源源不断地被触发,不管 doSomething 函数是否处理得过来。代码可以继续做如下改造,以解决这个问题。

var rs = fs.createReadStream(src);rs.on('data', function (chunk) {rs.pause();doSomething(chunk, function () {rs.resume();});
});rs.on('end', function () {cleanUp();
});

以上代码给 doSomething 函数加上了回调,因此我们可以在处理数据前暂停数据读取,并在处理数据后继续读取数据。

此外,我们也可以为数据目标创建一个只写数据流,示例如下:

var rs = fs.createReadStream(src);
var ws = fs.createWriteStream(dst);rs.on('data', function (chunk) {ws.write(chunk);
});rs.on('end', function () {ws.end();
});

我们把 doSomething 换成了往只写数据流里写入数据后,以上代码看起来就像是一个文件拷贝程序了。但是以上代码存在上边提到的问题,如果写入速度跟不上读取速度的话,只写数据流内部的缓存会爆仓。我们可以根据.write方法的返回值来判断传入的数据是写入目标了,还是临时放在了缓存了,并根据 drain 事件来判断什么时候只写数据流已经将缓存中的数据写入目标,可以传入下一个待写数据了。因此代码可以改造如下:

var rs = fs.createReadStream(src);
var ws = fs.createWriteStream(dst);rs.on('data', function (chunk) {if (ws.write(chunk) === false) {rs.pause();}
});rs.on('end', function () {ws.end();
});ws.on('drain', function () {rs.resume();
});

以上代码实现了数据从只读数据流到只写数据流的搬运,并包括了防爆仓控制。因为这种使用场景很多,例如上边的大文件拷贝程序,NodeJS 直接提供了.pipe方法来做这件事情,其内部实现方式与上边的代码类似。

File System(文件系统) 

NodeJS 通过 fs 内置模块提供对文件的操作。fs 模块提供的 API 基本上可以分为以下三类:

  • 文件属性读写。

其中常用的有 fs.stat、fs.chmod、fs.chown 等等。

  • 文件内容读写。

其中常用的有 fs.readFile、fs.readdir、fs.writeFile、fs.mkdir 等等。

  • 底层文件操作。

其中常用的有 fs.open、fs.read、fs.write、fs.close 等等。

NodeJS 最精华的异步 IO 模型在 fs 模块里有着充分的体现,例如上边提到的这些 API 都通过回调函数传递结果。以 fs.readFile 为例:

fs.readFile(pathname, function (err, data) {if (err) {// Deal with error.} else {// Deal with data.}
});

如上边代码所示,基本上所有 fs 模块 API 的回调参数都有两个。第一个参数在有错误发生时等于异常对象,第二个参数始终用于返回 API 方法执行结果。

此外,fs 模块的所有异步 API 都有对应的同步版本,用于无法使用异步操作时,或者同步操作更方便时的情况。同步 API 除了方法名的末尾多了一个 Sync 之外,异常对象与执行结果的传递方式也有相应变化。同样以fs.readFileSync 为例:

try {var data = fs.readFileSync(pathname);// Deal with data.
} catch (err) {// Deal with error.
}

fs 模块提供的 API 很多,这里不一一介绍,需要时请自行查阅官方文档。

文件拷贝

NodeJS 提供了基本的文件操作 API,但是像文件拷贝这种高级功能就没有提供,因此我们先拿文件拷贝程序练手。与 copy 命令类似,我们的程序需要能接受源文件路径与目标文件路径两个参数。

小文件拷贝

我们使用 NodeJS 内置的 fs 模块简单实现这个程序如下。

var fs = require('fs');
function copy(src, dst) {fs.writeFileSync(dst, fs.readFileSync(src));
}
function main(argv) {copy(argv[0], argv[1]);
}
main(process.argv.slice(2));

以上程序使用 fs.readFileSync 从源路径读取文件内容,并使用 fs.writeFileSync 将文件内容写入目标路径。

process 是一个全局变量,可通过 process.argv 获得命令行参数。由于 argv[0] 固定等于 NodeJS 执行程序的绝对路径,argv[1] 固定等于主模块的绝对路径,因此第一个命令行参数从 argv[2] 这个位置开始。

大文件拷贝

上边的程序拷贝一些小文件没啥问题,但这种一次性把所有文件内容都读取到内存中后再一次性写入磁盘的方式不适合拷贝大文件,内存会爆仓。对于大文件,我们只能读一点写一点,直到完成拷贝。因此上边的程序需要改造如下。

var fs = require('fs');
function copy(src, dst) {fs.createReadStream(src).pipe(fs.createWriteStream(dst));
}
function main(argv) {copy(argv[0], argv[1]);
}
main(process.argv.slice(2));

以上程序使用 fs.createReadStream 创建了一个源文件的只读数据流,并使用 fs.createWriteStream 创建了一个目标文件的只写数据流,并且用 pipe 方法把两个数据流连接了起来。连接起来后发生的事情,说得抽象点的话,水顺着水管从一个桶流到了另一个桶。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/444546.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

leetcode171. Excel表列序号

给定一个Excel表格中的列名称&#xff0c;返回其相应的列序号。 例如&#xff0c; A -> 1 B -> 2 C -> 3 ... Z -> 26 AA -> 27 AB -> 28 ... 示例 1: 输入: "A" 输出: 1 示例 2: 输入: "AB" 输出: 28 …

(七)nodejs循序渐进-模块系统(进阶篇)

模块系统 为了让Node.js的文件可以相互调用&#xff0c;Node.js提供了一个简单的模块系统。 模块是Node.js 应用程序的基本组成部分&#xff0c;文件和模块是一一对应的。换言之&#xff0c;一个 Node.js 文件就是一个模块&#xff0c;这个文件可能是JavaScript 代码、JSON 或…

(八)nodejs循序渐进-事件驱动(进阶篇)

事件驱动程序 Node.js 使用事件驱动模型&#xff0c;当web server接收到请求&#xff0c;就把它关闭然后进行处理&#xff0c;然后去服务下一个web请求。 当这个请求完成&#xff0c;它被放回处理队列&#xff0c;当到达队列开头&#xff0c;这个结果被返回给用户。 这个模型…

leetcode304. 二维区域和检索 - 矩阵不可变

给定一个二维矩阵&#xff0c;计算其子矩形范围内元素的总和&#xff0c;该子矩阵的左上角为 (row1, col1) &#xff0c;右下角为 (row2, col2)。 上图子矩阵左上角 (row1, col1) (2, 1) &#xff0c;右下角(row2, col2) (4, 3)&#xff0c;该子矩形内元素的总和为 8。 示例…

(九)nodejs循序渐进-Express框架(进阶篇)

Express 框架 Express 是一个简洁而灵活的 node.js Web应用框架, 提供了一系列强大特性帮助你创建各种 Web 应用&#xff0c;和丰富的 HTTP 工具。 使用 Express 可以快速地搭建一个完整功能的网站。 Express 框架核心特性&#xff1a; 可以设置中间件来响应 HTTP 请求。 定…

leetcode326. 3的幂 如此6的操作你想到了吗

给定一个整数&#xff0c;写一个函数来判断它是否是 3 的幂次方。 示例 1: 输入: 27 输出: true 示例 2: 输入: 0 输出: false 示例 3: 输入: 9 输出: true 示例 4: 输入: 45 输出: false 进阶&#xff1a; 你能不使用循环或者递归来完成本题吗&#xff1f; 注意最后一句…

(十)nodejs循序渐进-高性能游戏服务器框架pomelo之介绍和安装篇

目录 Pomelo 安装Pomelo 创建demoserver项目 pomelo命令 项目结构说明 pomelo框架 架构 服务器实现 客户端请求与响应、广播的抽象介绍 Pomelo pomelo是一个快速、可扩展、Node.js分布式游戏服务器框架&#xff0c;对游戏服务器开发感兴趣的同学可以关注关注。 之前…

leetcode344. 反转字符串 史上最简单力扣题

编写一个函数&#xff0c;其作用是将输入的字符串反转过来。输入字符串以字符数组 char[] 的形式给出。 不要给另外的数组分配额外的空间&#xff0c;你必须原地修改输入数组、使用 O(1) 的额外空间解决这一问题。 你可以假设数组中的所有字符都是 ASCII 码表中的可打印字符。…

(十一)nodejs循序渐进-高性能游戏服务器框架pomelo之启动流程和组件

游戏启动过程 启动入口 在使用pomelo进行游戏开发时&#xff0c;工程目录下的app.js是整个游戏服务器的启动运行入口。app.js中创建项目&#xff0c;进行默认配置并启动服务器的代码如下&#xff1a; var pomelo require(pomelo); var app pomelo.createApp(); app.set(na…

(十二)nodejs循序渐进-高性能游戏服务器框架pomelo之创建一个游戏聊天服务器

上个章节我们简单介绍了下pomelo的安装和目录结构&#xff0c;有读者可能觉得有点吃不消&#xff0c;为什么不再深入讲一讲目录结构和里边的库&#xff0c;这里我就不费口舌了&#xff0c;大家可以去官网参考文档说明&#xff0c;本文只告诉大家如何利用这个框架来开发自己的东…

看这玩意复习你还会挂科?《软件工程篇》

软件工程&#xff1a;是指导软件开发和维护的一门工程学科 三要素方法/工具/开发过程 价值&#xff1a;促进项目成功 现代产品开发三原则&#xff1a;功用性、可行性、称许性 软件过程是软件工程的核心组成部分。 迭代 &#xff1a;反复求精 增量&#xff1a;逐块建造 需…

C++:02---命名空间

一、概念: ①类似于仓库,空间内存储代码,需要用到时调用②也为防止名字冲突提供了更加可控的机制二、命名空间的定义 定义的基本格式如下:namespace 命名空间名 { //一系列声明与定义 };三、命名空间的注意事项 命名空间定义时最后的分号可有可无只要出现在全局作用域中的…

看这玩意复习你还会挂科?《软件工程2篇》

第一章&#xff1a; 软件工程定义&#xff1a; 1968年10月&#xff0c;Fritz Bauer 首次提出了“软件工程”的概念&#xff0c;并将“软件工程”定义为&#xff1a;为了经济地获得能够在实际机器上有效运行的可靠软件&#xff0c;而建立并使用的一系列工程化原则。 1993年IE…

C++:05---命名空间

一、概念: ①类似于仓库,空间内存储代码,需要用到时调用②也为防止名字冲突提供了更加可控的机制二、命名空间的定义 定义的基本格式如下:namespace 命名空间名 { //一系列声明与定义 };三、命名空间的注意事项 命名空间定义时最后的分号可有可无只要出现在全局作用域中的…

C++:04---内联函数

1.概念: 内联类似于宏定义,当程序执行到内联函数时,相当于复制了一份函数代码。牺牲代码空间,赢得了时间 内联说明只是向编译器发出一个请求,编译器可以选择忽略这个请求 2.关键字:inline 声明时写了inline,定义时可省略。建议声明和定义都加上inlineinline int add(int…

leetcode86. 分隔链表

给定一个链表和一个特定值 x&#xff0c;对链表进行分隔&#xff0c;使得所有小于 x 的节点都在大于或等于 x 的节点之前。 你应当保留两个分区中每个节点的初始相对位置。 示例: 输入: head 1->4->3->2->5->2, x 3 输出: 1->2->2->4->3->5…

(十三)nodejs循序渐进-高性能游戏服务器框架pomelo之扩展聊天服务器为机器人自动聊天

聊天服务器扩展 大家在上一篇文章里相信已经学会了pomelo框架的基本用法了&#xff0c;那么我们在上一篇文章的代码基础上继续扩展&#xff0c;丰富系统&#xff0c;另外也熟悉下他的更多的用法&#xff0c;这一节我将扩展它&#xff1a;增加一个机器人自动聊天的功能。 目的…

C++:09---类静态成员、类常量成员

一、类静态成员(static) 先介绍一下什么是静态变量、静态函数 静态局部变量:存在域(全局数据区),作用域(块作用域)静态全局变量:存在域(全局数据区),作用域(整个文件)静态函数:存在域(全局数据区),作用域(整个文件)static int a=10;//全局静态变量 static vo…

C++:08---成员变量初始化方式

成员变量初始化有三种方式: 在构造函数体内赋值初始化在自定义的公有函数体中赋值初始化(一般用于成员变量的初始化)在构造函数的成员初始化列表初始化一、构造函数体内初始化 说明:在构造函数体内的初始化方式,本质是是为成员变量赋值,而不是真正意义上的初始化,这点要…

leetcode1290. 二进制链表转整数 刷新认知,最简单算法题

给你一个单链表的引用结点 head。链表中每个结点的值不是 0 就是 1。已知此链表是一个整数数字的二进制表示形式。 请你返回该链表所表示数字的 十进制值 。 示例 1&#xff1a; 输入&#xff1a;head [1,0,1] 输出&#xff1a;5 解释&#xff1a;二进制数 (101) 转化为十进…