你真的了解静态变量、常量的存储位置吗?

文章目录

  • 引言
  • C++对内存的划分如何落实在Linux上
    • 自由存储区和堆之间的问题
    • 常量区
    • 静态存储区
  • 静态局部变量
    • 静态局部变量、静态全局变量、全局变量的异同
  • macOS系统的测试结果
    • 总结


引言

在动态内存的博客中,我提到:
在这里插入图片描述
在Linux 内存管理的博客中,我提到:
在这里插入图片描述

在这里插入图片描述
尽管都有尽可能完全的描述,并且两者大致意思没有冲突。而之所以令我一直感到略有不同,越看越迷糊的原因是:第一张图讲的其实是C++在概念上对内存的划分,第二张图讲的是Linux对虚拟内存进行的划分。 前者是概念上的,也是C++程序在运行时会切实执行的,而后者就是在Linux系统上对前者概念的具象化!下面进行进一步分析。


C++对内存的划分如何落实在Linux上

C++其实将内存划分为两种:动态存储区、静态存储区

第一张图对动态存储区进行了进一步划分——堆、栈

而网上其他博客可能还会对动态存储区进行进一步划分——堆、栈、自由存储区。并对静态存储区进行进一步划分——常量存储区、全局/静态存储区。

可谓是五花八门,我们不妨先做个归拢:

自由存储区和堆之间的问题

这篇博客分析地很详细C++ 自由存储区是否等价于堆?,我引用其中一些内容进行分析:

在概念上我们是这样区分两者的:

  • malloc 在堆上分配的内存块,使用 free 释放内存。
  • new 所申请的内存则是在自由存储区上,使用 delete 来释放。

那么物理上,自由存储区与堆是两块不同的内存区域吗?它们有可能相同吗?

基本上,所有的 C++编译器 默认使用堆来实现自由存储,也即是缺省的全局运算符 newdelete 也许会按照 mallocfree 的方式来被实现,这时藉由 new 运算符 分配的对象,说它在堆上也对,说它在自由存储区上也正确。 但程序员也可以通过重载操作符,改用其他内存来实现自由存储,例如全局变量做的对象池,这时自由存储区就区别于堆了

总结:

  • 自由存储C++ 中通过 newdelete 动态分配和释放对象的抽象概念,而 堆(heap)C语言操作系统 的术语,是操作系统维护的一块动态分配内存

  • new 所申请的内存区域在 C++ 中称为自由存储区。藉由堆实现的自由存储,可以说 new 所申请的内存区域在堆上

  • 堆与自由存储区的运作方式不同、访问方式不同,所以应该被当成不一样的东西来使用。

如何落实在Linux上?

C++中的自然也就对应Linux中的堆段,而C++中的自由存储区,如果不主动改用其他内存来实现自由存储,那么理应也在堆段上。

而正如上面所言,堆段由程序员进行申请和释放:

int main(){int *pi = new int; // pi指向一个动态分配的、未初始化的无名对象,该对象的地址位于堆上// 而pi的地址位于main函数的栈上
}

C++中的自然对应Linux中的栈段,栈段是进程运行之初(从main函数开始)创建的,进程运行时(main函数中)每调用一个函数就会在栈段上申请一段空间作为栈帧,来管理调用函数的相关信息。

void fun(){int j = 2; // 调用fun时,j存在于fun的栈帧上cout << "hello" << endl;
}
int main(){ // 创建栈段int i = 1; // 存在于栈段上fun(); // 创建栈帧
}

常量区

c++ 中,一个 const 不是必需创建内存空间,而在 c 中,一个 const 总是需要一块内存空间。

常量分为全局常量和局部常量:

全局常量

是否要为 const全局变量 分配内存空间,取决于这个全局常量的用途,如果是充当着一个值替换(将一个变量名替换为一个值),那么就不分配内存空间,不过当对这个全局常量取地址或者使用 extern 时,会分配内存,存储在只读数据段,是不能修改的。

因为全局变量在内存中的位置与全局常量一样,只不过没有 read only 属性,因此在这里也就一并提了,全局常量同样被分配到数据段上,但是可以修改。

PS:未初始化初始化为0 的全局变量(包括全局常量)被分配在 .bss 段上,已初始化 的被分配在 数据段 上。

局部常量

  1. 对于基础数据类型,也就是 const int a = 10 这种,编译器会把它放到符号表中,不分配内存,当对其取地址时,会在栈段分配内存。
  2. 对于基础数据类型,如果用一个变量初始化 局部常量,如果 const int a = b,那么也是会给 a栈段分配内存。
  3. 对于自定数据类型,比如类对象,那么也会在栈段分配内存。

题外话

  • cconst 默认为外部连接c++const 默认为内部连接
  • c 语言两个文件中都有 const int a 的时候,编译器会报重定义的错误。
  • 而在 c++ 中则不会,因为 c++ 中的 const 默认是内部连接的。如果想让 c++ 中的 const 具有外部连接,必须显式声明为 extern const int a = 10

示例

const int lx = 5;
// 没有使用的时候仅保存在符号表
// 使用extern或取地址的时候为其在数据段的只读部分分配内存
// 个人猜测也有可能在代码段的.rodata。
int o = 6;class A
{const int lz = 1; // 在栈段分配内存
public:void put() {cout << &lz << endl;}
};int main() {A a;int x = 2; // 对照main中的变量来确定其他常量的位置// 因为我们确定 x 在栈段上// 因此如果其他常量的地址与 x 的地址类似// 则说明其他常量也在栈段上const int z = 1; // 取地址时,会在栈段分配内存const int y = x; // 取地址时,会在栈段分配内存
}

在这里插入图片描述


静态存储区

静态变量分为:全局静态变量、局部静态变量

而关于它们的存储位置,我在 Linux内存管理 一文中已经说的很详细了,下面的静态变量包括全局静态变量和局部静态变量:
在这里插入图片描述


静态局部变量

猜测下面代码的输出结果:

void f(int) {static int i = 0;cout << &i << " " << ++i << endl;
}
void f(double) {static int i = 0;cout << &i << " " << ++i << endl;
}
int main() {f(1);f(1.0);f(1);f(1.0);f(1);
}

答案:
在这里插入图片描述

这里证明了静态局部变量的特性:只初始化一次,并且只对定义自己的函数可见。 因此在上面的调用中,并不会出现因为两个静态局部变量名字相同而赋值出错的情况。

静态局部变量、静态全局变量、全局变量的异同

  1. 全局变量在整个工程文件内都有效,静态全局变量只在定义它的文件内有效;
  2. 静态局部变量只在定义它的函数内有效,且程序仅分配一次内存(只初始化一次),函数返回后,该变量不会消失;
  3. 全局变量静态变量如果没有手工初始化,则由编译器初始化为 0
  4. 静态局部变量静态全局变量 共享 数据段(或.BSS段)

macOS系统的测试结果

macOS系统下,测试结果如下:

#include <string>
#include <iostream>using namespace std;const int a = 0;int a1;int a2 = 1;static const int a3 = 2;static int a4 = 2;class A{
public:int b;const int b1 = 1;static const int b2 = 2;static int b3;void put(){cout << "类内变量:" << &b << endl;cout << "类内常量:" << &b1 << endl;}
};const int A::b2;
int A::b3;int main(){int c;const int c1 = 1;static int c2;static const int c3 = 5;cout << "全局常量:" << &a << endl;cout << "全局静态常量:" << &a3 << endl;cout << "类内静态常量:" << &A::b2 << endl;cout << "局部静态常量:" << &c3 << endl;cout << "类内静态变量:" << &A::b3 << endl;cout << "局部静态变量:" << &c2 << endl;cout << "全局变量,未初始化:" << &a1 << endl;cout << "全局变量,已初始化:" << &a2 << endl;cout << "全局静态变量:" << &a4 << endl;cout << "局部变量:" << &c << endl;cout << "局部常量:" << &c1 << endl;A a;a.put();return 0;
}

输出结果:
在这里插入图片描述

总结

  • 非静态非全局类内局部变量 都在 上。
  • 全局】 / 【静态(不论 局部 还是 类内)】的 常量,都在 .bss 段上。
  • 全局】 / 【静态(不论 局部 还是 类内)】的 变量,都在 数据段中 .bss 段以外的位置 上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/443754.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ 泛型编程(二):非类型模板参数,模板特化,模板的分离编译

文章目录非类型模板参数函数模板的特化类模板的特化全特化偏特化部分参数特化参数修饰特化模板分离编译解决方法非类型模板参数 模板的参数分为两种&#xff1a; 类型参数&#xff1a; 则是我们通常使用的方式&#xff0c;就是在模板的参数列表中在 class 后面加上参数的类型…

数据结构 | B树、B+树、B*树

文章目录搜索结构B树B树的插入B树的遍历B树的性能B树B树的插入B树的遍历B*树B*树的插入总结搜索结构 如果我们有大量的数据需要永久存储&#xff0c;就需要存储到硬盘之中。但是硬盘的访问速度远远小于内存&#xff0c;并且由于数据量过大&#xff0c;无法一次性加载到内存中。…

MySQL 索引 :哈希索引、B+树索引、全文索引

文章目录索引引言常见的索引哈希索引自适应哈希索引B树索引聚集索引非聚集索引使用方法联合索引最左前缀匹配规则覆盖索引全文索引使用方法索引 引言 为什么需要索引&#xff1f; 倘若不使用索引&#xff0c;查找数据时&#xff0c;MySQL必须遍历整个表。而表越大&#xff0c;…

服装店怎么引流和吸引顾客 服装店铺收银系统来配合

实体店的同城引流和经营是实体经济的一个重要的一环&#xff0c;今天我们来分享服装行业的实体店铺怎么引流和吸引、留住顾客&#xff0c;并实现复购。大家点个收藏&#xff0c;不然划走就再也找不到了&#xff0c;另外可以点个关注&#xff0c;下次有新的更好的招&#xff0c;…

MySQL 锁的相关知识 | lock与latch、锁的类型、简谈MVCC、锁算法、死锁、锁升级

文章目录lock与latch锁的类型MVCC一致性非锁定读&#xff08;快照读&#xff09;一致性锁定读&#xff08;当前读&#xff09;锁算法死锁锁升级lock与latch 在了解数据库锁之前&#xff0c;首先就要区分开 lock 和 latch。在数据库中&#xff0c;lock 和 latch 虽然都是锁&…

MySQL 存储引擎 | MyISAM 与 InnoDB

文章目录概念innodb引擎的4大特性索引结构InnoDBMyISAM区别表级锁和行级锁概念 MyISAM 是 MySQL 的默认数据库引擎&#xff08;5.5版之前&#xff09;&#xff0c;但因为不支持事务处理而被 InnoDB 替代。 然而事物都是有两面性的&#xff0c;InnoDB 支持事务处理也会带来一些…

MySQL 事务 | ACID、四种隔离级别、并发带来的隔离问题、事务的使用与实现

文章目录事务ACID并发带来的隔离问题幻读&#xff08;虚读&#xff09;不可重复读脏读丢失更新隔离级别Read Uncommitted (读未提交)Read Committed (读已提交)Repeatable Read (可重复读)Serializable (可串行化)事务的使用事务的实现Redoundo事务 事务指逻辑上的一组操作。 …

MySQL 备份与主从复制

文章目录备份主从复制主从复制的作用备份 根据备份方法的不同&#xff0c;备份可划分为以下几种类型&#xff1a; 热备(Hot Backup) &#xff1a; 热备指的是在数据库运行的时候直接备份&#xff0c;并且对正在运行的数据库毫无影响&#xff0c;这种方法在 MySQL 官方手册中又…

C++ 流的操作 | 初识IO类、文件流、string流的使用

文章目录前言IO头文件iostreamfstreamsstream流的使用不能拷贝或对 IO对象 赋值条件状态与 iostate 类型输出缓冲区文件流fstream类型文件模式文件光标函数tellg() / tellp()seekg() / seekp()向文件存储内容/读取文件内容string流istringstreamostringstream前言 我们在使用 …

C++ 右值引用 | 左值、右值、move、移动语义、引用限定符

文章目录C11为什么引入右值&#xff1f;区分左值引用、右值引用move移动语义移动构造函数移动赋值运算符合成的移动操作小结引用限定符规定this是左值or右值引用限定符与重载C11为什么引入右值&#xff1f; C11引入了一个扩展内存的方法——移动而非拷贝&#xff0c;移动较之拷…

且谈关于最近软件测试的面试

前段时间有新的产品需要招人&#xff0c;安排和参加了好几次面试&#xff0c;下面就谈谈具体的面试问题&#xff0c;在面试他人的同时也面试自己。 面试问题是参与面试同事各自设计的&#xff0c;我也不清楚其他同事的题目&#xff0c;就谈谈自己设计的其中2道题。 过去面试总是…

C++ 多态 | 虚函数、抽象类、虚函数表

文章目录多态虚函数重写重定义&#xff08;参数不同&#xff09;协变&#xff08;返回值不同&#xff09;析构函数重写&#xff08;函数名不同&#xff09;final和override重载、重写、重定义抽象类多态的原理虚函数常见问题解析虚函数表多态 一种事物&#xff0c;多种形态。换…

C++ 运算符重载(一) | 输入/输出,相等/不等,复合赋值,下标,自增/自减,成员访问运算符

文章目录输出运算符<<输入运算符>>相等/不等运算符复合赋值运算符下标运算符自增/自减运算符成员访问运算符输出运算符<< 通常情况下&#xff0c;输出运算符的第一个形参是一个 非常量ostream对象的引用 。之所以 ostream 是非常量是因为向流写入内容会改变…

C++ 重载函数调用运算符 | 再探lambda,函数对象,可调用对象

文章目录重载函数调用运算符lambdalambda等价于函数对象lambda等价于类标准库函数对象可调用对象与function可调用对象function函数重载与function重载函数调用运算符 函数调用运算符必须是成员函数。 一个类可以定义多个不同版本的调用运算符&#xff0c;互相之间应该在参数数…

C++ 运算符重载(二) | 类型转换运算符,二义性问题

文章目录类型转换运算符概念避免过度使用类型转换函数解决上述问题的方法转换为 bool显式的类型转换运算符类型转换二义性重载函数与类型转换结合导致的二义性重载运算符与类型转换结合导致的二义性类型转换运算符 概念 类型转换运算符&#xff08;conversion operator&#…

分布式理论:CAP、BASE | 分布式存储与一致性哈希

文章目录分布式理论CAP定理BASE理论分布式存储与一致性哈希简单哈希一致性哈希虚拟节点分布式理论 CAP定理 一致性&#xff08;Consistency&#xff09;&#xff1a; 在分布式系统中的所有数据副本&#xff0c;在同一时刻是否一致&#xff08;所有节点访问同一份最新的数据副…

分布式系统概念 | 分布式事务:2PC、3PC、本地消息表

文章目录分布式事务2PC&#xff08;二阶段提交协议&#xff09;执行流程优缺点3PC&#xff08;三阶段提交协议&#xff09;执行流程优缺点本地消息表&#xff08;异步确保&#xff09;分布式事务 分布式事务就是指事务的参与者、支持事务的服务器、资源服务器以及事务管理器分…

数据结构算法 | 单调栈

文章目录算法概述题目下一个更大的元素 I思路代码下一个更大元素 II思路代码132 模式思路代码接雨水思路算法概述 当题目出现 「找到最近一个比其大的元素」 的字眼时&#xff0c;自然会想到 「单调栈」 。——三叶姐 单调栈以严格递增or递减的规则将无序的数列进行选择性排序…

最长下降子序列

文章目录题目解法DP暴搜思路代码实现贪心二分思路代码实现题目 给出一组数据 nums&#xff0c;求出其最长下降子序列&#xff08;子序列允许不连续&#xff09;的长度。&#xff08;类似于lc的最长递增子序列&#xff09; 示例&#xff1a; 输入&#xff1a; 6 // 数组元素个…

Linux 服务器程序规范、服务器日志、用户、进程间的关系

文章目录服务器程序规范日志rsyslogd 守护进程syslog函数openlog函数setlogmask函数closelog函数用户进程间的关系进程组会话系统资源限制改变工作目录和根目录服务器程序后台化服务器程序规范 Linux 服务器程序一般以后台进程&#xff08;守护进程[daemon]&#xff09;形式运…